A Prototype of a remotely controlled multichannel surface muscle stimulator

Main Article Content

P. Silverio-Cevallos
J.
D. A. Molina-Vidal
C. J. Tierra-Criollo
P. Cevallos-Larrea

Abstract

Multichannel Functional Electrical Stimulation (FES) technology is widely employed in artificial motor control research. This study presents the design and evaluation of a four-channel, remotely controlled surface electrical muscle stimulator prototype. The prototype introduces a modern alternative for the control block, employing a Wi-Fi-enabled solution based on the ESP32 microcontroller. This controller enables remote configuration of activation sequences for individual channels and supports extensive customization of parameters for a biphasic waveform stimulus. The current signal is demultiplexed into four outputs. Additionally, this study provides a detailed functional evaluation of the amplification stage and examines the load-dependent limitations of the output current magnitude. Preliminary experimental testing demonstrates the prototype's ability to generate controlled stimulation sequences in hand muscles. The prototype's functional and experimental performance suggests its potential application in artificial motor control research.

Article Details

Section
Scientific Paper
Author Biographies

D. A. Molina-Vidal, Universidad Federal de Río de Janeiro

I am an Electronic Engineer (Universidad Politécnica Salesiana, Ecuador) with specialization in industrial systems and development of electronic solutions. I am currently pursuing a Master's degree in Biomedical Engineering, which has allowed me to expand my knowledge and skills in this interdisciplinary field. I have gained extensive experience through my participation in the Biomedical Engineering Research Group (GIIB - UPS) and in the Image and Signal Processing Laboratory (LAPIS - UFRJ), where I have contributed to the development of electromedical technology.

C. J. Tierra-Criollo, Universidad Federal de Río de Janeiro

He graduated in Electronic Engineering - Escuela Politécnica Del Ejército-Quito (1986), Master (1993) and PhD in Biomedical Engineering from the Federal University of Rio de Janeiro (2001). He was associate professor in the Department of Electrical Engineering at the Federal University of Minas Gerais. He is currently an associate professor at the Alberto Luiz Coimbra Graduate Institute of Engineering Research (Coppe) of the Federal University of Rio de Janeiro. He has experience in Biomedical Engineering, working mainly on the following topics: biomedical instrumentation, biological signal processing, neurosciences, neural engineering, motor imaging, brain-machine interfaces, evoked potentials, assistive technologies.

References

R. N. L. Lamptey, B. Chaulagain, R. Trivedi, A. Gothwal, B. Layek, and J. Singh, “A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics,” International Journal of Molecular Sciences, vol. 23, no. 3, 2022. [Online]. Available: https://doi.org/10.3390/ijms23031851

C. H. Zapata-Zapata, E. Franco-Dáger, J. M. Solano-Atehortúa, and L. F. Ahunca-Velásquez, “Esclerosis lateral amiotrófica: actualización,” Revista Médica Iatreia, vol. 29, no. 2, pp. 194–205, 2016. [Online]. Available: https://doi.org/10.17533/udea.iatreia.v29n2a08

N. Cardona, S. J. Ocampo, J. M. Estrada, M. I. Mojica, and G. L. Porras, “Caracterización clínica y funcional de pacientes con atrofia muscular espinal en el centro-occidente colombiano,” Revista del Instituto Nacional de Salud Biomedica, vol. 42, no. 1, pp. 59–99, 2022. [Online]. Available: https://doi.org/10.7705/biomedica.6178

L. Meng, M. Jin, X. Zhu, and D. Ming, “Peripherical electrical stimulation for parkinsonian tremor: A systematic review,” Frontiers in Aging Neuroscience, vol. 14, 2022. [Online]. Available: https://doi.org/10.3389/fnagi.2022.795454

O. Hardiman, A. Al-Chalabi, A. Chio, E. M. Corr, G. Logroscino, W. Robberecht, P. J. Shaw, Z. Simmons, and L. H. van den Berg, “Amyotrophic lateral sclerosis,” Nature Reviews Disease Primers, vol. 3, no. 1, p. 17071, Oct 2017. [Online]. Available: https://doi.org/10.1038/nrdp.2017.71

M. Gobbo, S. Lazzarini, L. Vacchi, P. Gaffurini, L. Bissolotti, A. Padovani, and M. Filosto, “Exercise combined with electrotherapy enhances motor function in an adolescent with spinal muscular atrophy type iii,” Case Reports in Neurological Medicine, vol. 2019, no. 1, p. 4839793, 2019. [Online]. Available: https://doi.org/10.1155/2019/4839793

A. Wright and K. A. Sluka, “Nonpharmacological treatments for musculoskeletal pain,” The Clinical Journal of Pain, vol. 17, no. 1, 2001. [Online]. Available: https://doi.org/10.1097/00002508-200103000-00006

D. B. Popovic, “Advances in functional electrical stimulation (fes),” Journal of Electromyography and Kinesiology, vol. 24, no. 6, pp. 795–802, 2014. [Online]. Available: https://doi.org/10.1016/j.jelekin.2014.09.008

C. Marquez-Chin and M. R. Popovic, “Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review,” BioMedical Engineering OnLine, vol. 19, no. 1, p. 34, May 2020. [Online]. Available: https://doi.org/10.1186/s12938-020-00773-4

M. Djuric-Jovicic, S. Radovanovic, I. Petrovic, C. Azevedo, G. Mann, and M. Popovic, “The impact of functional electrical stimulation (fes) on freezing of gait (fog) in patients with parkinson’s disease,” Clinical Neurophysiology, vol. 124, no. 7, p. e11, 2013. [Online]. Available: https://doi.org/10.1016/j.clinph.2012.12.019

F. Naz, D. Hussain, H. Ali, Q. Raza, and F. Siddique, “Effectiveness of functional electrical stimulation machine in managing neurological diseases - a retrospective study,” Pakistan Journal of Medical Sciences, vol. 40, no. 2(ICON), Dec. 2023. [Online]. Available: https://doi.org/10.12669/pjms.40.2(ICON).8966

R. Rupp and H. J. Gerner, Neuroprosthetics of the upper extremity — clinical application in spinal cord injury and challenges for the future. Vienna: Springer Vienna, 2007, pp. 419–426. [Online]. Available: https://doi.org/10.1007/978-3-211-33079-1_55

W. Young, “Electrical stimulation and motor recovery,” Cell Transplantation, vol. 24, no. 3, pp. 429–446, 2015, pMID: 25646771. [Online]. Available: https://doi.org/10.3727/096368915X686904

A. Masdar, B. K. K. Ibrahim, and M. M. Abdul Jamil, “Development of wireless-based low-cost current controlled stimulator for patients with spinal cord injuries,” in 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, 2012, pp. 493–498. [Online]. Available: https://doi.org/10.1109/IECBES.2012.6498175

H.-P. Wang, A.-W. Guo, Y.-X. Zhou, Y. Xia, J. Huang, C.-Y. Xu, Z.-H. Huang, X.-Y. Lü, and Z.-G. Wang, “A wireless wearable surface functional electrical stimulator,” International Journal of Electronics, vol. 104, no. 9, pp. 1514–1526, 2017. [Online]. Available: https://doi.org/10.1080/00207217.2017.1312708

T. Keller, M. Lawrence, A. Kuhn, and M. Morari, “New multi-channel transcutaneous electrical stimulation technology for rehabilitation,” in 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, pp. 194–197. [Online]. Available: https://doi.org/10.1109/IEMBS.2006.259399

S. V. C. y Jose Hernandez Jacquez y Mario Cepeda Rubio y Carlos Juárez Rodríguez y Diana Piña Santos y Geshel Guerrero Lopez, “Efecto de los electroestimuladores tens en los síntomas motores de la enfermedad de parkinson,” Medicina e Investigación Universidad Autónoma del Estado de México, vol. 11, no. 1, pp. 1–5, 2023. [Online]. Available: https://doi.org/10.36677/medicinainvestigacion.v11i1.20293

F. C. Atamaz, B. Durmaz, M. Baydar, O. Y. Demircioglu, A. Iyiyapici, B. Kuran, S. Oncel, and O. F. Sendur, “Comparison of the efficacy of transcutaneous electrical nerve stimulation, interferential currents, and shortwave diathermy in knee osteoarthritis: A double-blind, randomized, controlled, multicenter study,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 5, pp. 748–756, 2012. [Online]. Available: https://doi.org/10.1016/j.apmr.2011.11.037

S. Farahmand, H. Vahedian, M. Abedinkhan Eslami, and A. M. Sodagar, “Wearable, battery-powered, wireless, programmable 8-channel neural stimulator,” in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 6120–6123. [Online]. Available: https://doi.org/10.1109/EMBC.2012.6347390

Q. Xu, T. Huang, J. He, Y. W ang, and H. Zhou, “A programmable multi-channel stimulator for array electrodes in transcutaneous electrical stimulation,” in The 2011 IEEE/ICME International Conference on Complex Medical Engineering, 2011, pp. 652–656. [Online]. Available: https://doi.org/10.1109/ICCME.2011.5876821

M. Sugandi, H. Satria, H. Arif, N. Nelmiawati, and I. H. Mulyadi, “Low cost wireless ecg patch using esp32,” Journal Integrasi, vol. 12, no. 1, pp. 31–35, 2020. [Online]. Available: https://doi.org/10.30871/ji.v12i1.1764

J. Ferdous, B. Roy, M. Hossen, and M. I. Md., “Implementation of iot based patient health monitoring system using esp32 web server,” International Journal of Advanced Research (IJAR), vol. 11, pp. 716–726, 2023. [Online]. Available: https://dx.doi.org/10.21474/IJAR01/17119

K. Sangeethalakshmi, A. S. Preethi, U. Preethi, S. Pavithra, and P. V. Shanmuga, “Patient health monitoring system using iot,” Materials Today: Proceedings, vol. 80, pp. 2228–2231, 2023, sI:5 NANO 2021. [Online]. Available: https://doi.org/10.1016/j.matpr.2021.06.188

R. Priyanka and M. Reji, “Iot based health monitoring system using blynk app,” International Journal of Engineering and Advanced Technology (IJEAT=, vol. 8, no. 6, pp. 78–81, 2019. [Online]. Available: http://www.doi.org/10.35940/ijeat.E7467.088619

Kodular. (2023) Home – kodular. [Online]. Available: https://upsalesiana.ec/ing33ar4r25 [26] M. D. E. Goodyear, K. Krleza-Jeric, and T. Lemmens, “The declaration of helsinki,” BMJ, vol. 335, no. 7621, pp. 624–625, 2007. [Online]. Available: https://doi.org/10.1136/bmj.39339.610000.BE

X. Bao, Y. Zhou, Y. Wang, J. Zhang, X. Lü, and Z. Wang, “Electrode placement finger extension/flexion,” PLOS ONE, vol. 13, no. 1, pp. 1–22, 01 2018. [Online]. Available: https://doi.org/10.1371/journal.pone.0190936

A. Takahashi, J. Brooks, H. Kajimoto, and P. Lopes, “Increasing electrical muscle stimulation’s dexterity by means of back of the hand actuation,” in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, ser. CHI ’21. New York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3411764.3445761