Application of MANETs as a communication system for sustainable mobility

Main Article Content

Nancy Eras
José Andrés Otavalo
Santiago González

Abstract

This paper presents an architecture based on the MANET (Mobile Ad Hoc Network) paradigm as an emergency communication system between users of electric bicycles. The solution consists of 4 mobile nodes representing the users and a main fixed node, which emulates a bicycle docking station. This architecture allows multi-hop communication between the nodes, using the proactive routing protocols OLSR (Optimized Link State Routing) and BATMAN (Better Approach to Mobile Ad Hoc Networking). The study was divided into 3 main stages. First, an analysis of the wireless medium was performed to determine the maximum transmission distance and the maximum bitrate between 2 nodes. Subsequently, the throughput behavior was characterized in a multihop configuration consisting of 4 nodes in order to establish the network capacity in terms of bandwidth. Finally, a web application was implemented for the transmission of audio and text traffic. Regarding the evaluation of the proposal, two scenarios were designed to emulate the integration of a new cyclist to the network and the communication between two users in motion. The results reveal that OLSR provides a better system operation, with a throughput of 2.54 Mbps at 3 hops and a PRR (Packet Reception Rate) higher than 96%. In addition, it guarantees a delay within the ITU-T (International Telecommunication Union-Telecommunication) G.114 recommendation for bidirectional communication.

Article Details

Section
Scientific Paper

References

E. Salmeron-Manzano and F. Manzano-Agugliaro, “The electric bicycle: Worldwide research trends,” Energies, vol. 11, no. 7, 2018. [Online]. Available: https://doi.org/10.3390/en11071894

K. Pangbourne, D. Stead, M. Mladenovic, and D. Milakis, The Case of Mobility as a Service: A Critical Reflection on Challenges for Urban Transport and Mobility Governance. United Kingdom: Emerald, 2018, pp. 33–48. [Online]. Available: https://upsalesiana.ec/ing33ar3r2

X. Xia, H. Jiang, and J. Wang, “Analysis of user satisfaction of shared bicycles based on sem,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, no. 3, pp. 1587–1601, Mar 2022. [Online]. Available: https://doi.org/10.1007/s12652-019-01422-y

Z. Yang, J. Chen, J. Hu, Y. Shu, and P. Cheng, “Mobility modeling and datadriven closed-loop prediction in bike-sharing systems,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 12, pp. 4488–4499, 2019. [Online]. Available: https://doi.org/10.1109/TITS.2018.2886456

S. Shen, Z.-Q. Wei, L.-J. Sun, Y.-Q. Su, R.-C. Wang, and H.-M. Jiang, “The shared bicycle and its network-internet of shared bicycle (iosb): A review and survey,” Sensors, vol. 18, no. 8, 2018. [Online]. Available: https://doi.org/10.3390/s18082581

F. Chen, K. Turon, M. Klos, W. Pamula, G. Sierpinski, and P. Czech, “Fifth generation bike-sharing systems: examples from poland and china,” Scientific Journal of Silesian University of Technology. Series Transport, vol. 99, pp. 05–13, 05 2018. [Online]. Available: http://dx.doi.org/10.20858/sjsutst.2018.99.1

T. Bielinski and A. Wazna, “New generation of bike sharing systems in china: Lessons for european cities,” Journal of Management and Financial Sciences, no. 33, pp. 25–42, 2019. [Online]. Available: https://doi.org/10.33119/JMFS.2018.33.2

S. Yoo, S. Hong, Y. Park, A. Okuyama, Z. Zhang, Y. Yoshida, and S. Managi, “Danger, Respect, and Indifference: Bike-Sharing Choices in Shanghai and Tokyo using Latent Choice Models,” MPRA Paper 108312, 2021. [Online]. Available: https://upsalesiana.ec/ing33ar3r8

M. Frikha, Ad Hoc Networks: Routing, Qos and Optimization. Wiley, 2013. [Online]. Available: https://upsalesiana.ec/ing33ar3r9

P. Astudillo Picon, C. Quidne Romero, S. Gonzalez Martinez, and I. Palacios Serrano, “Evaluación y comparación de códecs de video para el despliegue de un sistema de comunicación resiliente,” Revista Tecnologica ESPOL, vol. 34, no. 3, pp. 12–30, 2022. [Online]. Available: https://doi.org/10.37815/rte.v34n3.935

J. Loo, J. Lloret, and J. Ortiz, Mobile Ad Hoc Networks. Taylor & Francis, 2011. [Online]. Available: https://doi.org/10.1201/b11447

K. Polshchykov, S. Lazarev, and E. Kiseleva, “Decision-making supporting algorithm for choosing the duration of the audio communication session in a mobile ad-hoc network,” Revista de la Universidad del Zulia, vol. 10, no. 27, pp. 101–107, dic. 2019. [Online]. Available: https://upsalesiana.ec/ing33ar3r12

M. A. Al-Absi, A. A. Al-Absi, M. Sain, and H. Lee, “Moving ad hoc networks—a comparative study,” Sustainability, vol. 13, no. 11, 2021. [Online]. Available: https://doi.org/10.3390/su13116187

A. Rosa, P. A. Costa, and J. Leitão, “Generalizing wireless ad hoc routing for future edge applications,” in Mobile and Ubiquitous Systems: Computing, Networking and Services, T. Hara and H. Yamaguchi, Eds. Cham: Springer International Publishing, 2022, pp. 264–279. [Online]. Available: https://doi.org/10.1007/978-3-030-94822-1_15

L. Reis, D. Macedo, and J. Nogueira, “Autoconfiguraçao de rotas em redes ad-hoc de vants,” in Anais do XXVII Workshop de Gerência e Operação de Redes e Serviços. Porto Alegre, RS, Brasil: SBC, 2022, pp. 99–112. [Online]. Available: https://doi.org/10.5753/wgrs.2022.223504

D. G.C., A. Ladas, Y. A. Sambo, H. Pervaiz, C. Politis, and M. A. Imran, “An overview of post-disaster emergency communication systems in the future networks,” IEEE Wireless Communications, vol. 26, no. 6, pp. 132–139, 2019. [Online]. Available: https://doi.org/10.1109/MWC.2019.1800467

F. A. León Mateo, M. d. R. Cruz Felipe, and E. T. Zambrano Solorzano, “Revisión de estudios sobre sistemas fanet y drones para emergencias o desastres naturales,” Serie Científica de la Universidad de las Ciencias Informáticas, vol. 15, no. 4, pp. 41–56, 2022. [Online]. Available: https://upsalesiana.ec/ing33ar3r17

A. M. Soomro, M. F. Bin Fudzee, M. Hussain, H. M. Saim, G. Zaman, A. Rahman, H. AlUbaidan, and M. Nabil, “Comparative review of routing protocols in manet for future research in disaster management,” Journal of Communications, 2022. [Online]. Available: https://doi.org/10.12720/jcm

M. O. Olusanya and O. R. Vincent, “A manet-based emergency communication system for environmental hazards using opportunistic routing,” in 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), 2020, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICMCECS47690.2020.240894

A. Guillen-Perez, A.-M. Montoya, J.-C. Sanchez- Aarnoutse, and M.-D. Cano, “A comparative performance evaluation of routing protocols for flying ad-hoc networks in real conditions,” Applied Sciences, vol. 11, no. 10, 2021. [Online]. Available: https://doi.org/10.3390/app11104363

Wardi, Dewiani, M. Baharuddin, S. Panggalo, and M. F. B. Gufran, “Performance of routing protocol olsr and batman in multi-hop and mesh ad hoc network on raspberry pi,” IOP Conference Series: Materials Science and Engineering, vol. 875, no. 1, p. 012046, jun 2020. [Online]. Available: https://dx.doi.org/10.1088/1757-899X/875/1/012046

J. Yi and C. Poellabauer, “Real-time multicast for wireless multihop networks,” Computers & Electrical Engineering, vol. 36, no. 2, pp. 313–327, 2010, wireless ad hoc, Sensor and Mesh Networks. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2009.03.009

Z. haitao, Z. yuting, Z. hongbo, and L. dapeng, “Resource management in vehicular ad hoc networks: Multi-parameter fuzzy optimization scheme,” Procedia Computer Science, vol. 129, pp. 443–448, 2018, 2017 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGEIN THE INTERNET OF THINGS. [Online]. Available: https://doi.org/10.1016/j.procs.2018.03.022

M. Elaryh Makki Dafalla, R. A. Mokhtar, R. A. Saeed, H. Alhumyani, S. Abdel-Khalek, and M. Khayyat, “An optimized link state routing protocol for real time application over vehicular ad hoc network,” Alexandria Engineering Journal, vol. 61, no. 6, pp. 4541–4556, 2022. [Online]. Available: https://doi.org/10.1016/j.aej.2021.10.013

K. A. Polshchykov, S. A. Lazarev, E. D. Kiseleva, E. M. Mamatov, and E. V. Ilinskaya, “Audio communication quality provisionin a self-organizing network,” Procedia EnvironmentalScience, Engineering and Management, vol. 9, pp. 509–515, 2022. [Online]. Available: https://upsalesiana.ec/ing33ar3r25

M. Hosseinzadeh, S. Ali, A. H. Mohammed, J. Lansky, S. Mildeova, M. S. Yousefpoor, E. Yousefpoor, O. Hassan Ahmed, A. M. Rahmani, and A. Mehmood, “An energy-aware routing scheme based on a virtual relay tunnel in flying ad hoc networks,” Alexandria Engineering Journal, vol. 91, pp. 249–260, 2024. [Online]. Available: https://doi.org/10.1016/j.aej.2024.02.006

R. Prasad P and Shivashankar, “Enhanced energy efficient secure routing protocol for mobile ad-hoc network,” Global Transitions Proceedings, vol. 3, no. 2, pp. 412–423, 2022, global Transitions 2019. [Online]. Available: https://doi.org/10.1016/j.gltp.2021.10.001

M. Arun and R. Jayanthi, “An adaptive congestion and energy aware multipath routing scheme for mobile ad-hoc networks through stable link prediction,” Measurement: Sensors, vol. 30, p. 100926, 2023. [Online]. Available: https://doi.org/10.1016/j.measen.2023.100926

Iper.fr. (2023) iperf - the tcp, udp and sctp networkbandwidth measurement tool. [Online]. Available: https://upsalesiana.ec/ing33ar3r29

FFmpeg. (2023) A complete, cross-platform solution to record, convert and stream audio and video. [Online]. Available: https://upsalesiana.ec/ing33ar3r30

W. E. Castellanos Hernández, “Quality of service routing and mechanisms for improving video streaming over mobile wireless ad hoc networks,” Ph.D. dissertation, Universitat Politecnica de Valencia, 2015. [Online]. Available: http://dx.doi.org/10.4995/Thesis/10251/53238

Ecomove. (2023) Tiv - ecomove. [Online]. Available: https://upsalesiana.ec/ing33ar3r32

Adafruit. (2023) Adafruit ina219 current sensor breakout. [Online]. Available: https://upsalesiana.ec/ing33ar3r33