Convolutional neural networks for diabetic retinopathy detection

Main Article Content

Darwin Patiño-Pérez
Luis Armijos-Valarezo
Luis Chóez-Acosta
Freddy Burgos-Robalino

Abstract

The early detection of diabetic retinopathy remains a critical challenge in medical diagnostics, with deep learning techniques in artificial intelligence offering promising solutions for identifying pathological patterns in retinal images. This study evaluates and compares the performance of three convolutional neural network (CNN) architectures ResNet-18, ResNet-50, and a custom, non-pretrained CNN using a dataset of retinal images classified into five categories. The findings reveal significant differences in the models' ability to learn and generalize. The non-pretrained CNN consistently outperformed the pretrained ResNet-18 and ResNet-50 models, achieving an accuracy of 91% and demonstrating notable classification stability. In contrast, ResNet-18 suffered severe performance degradation, with accuracy dropping from 70% to 26%, while ResNet-50 required extensive tuning to improve its outcomes. The non-pretrained CNN excelled in handling class imbalances and capturing complex diagnostic patterns, emphasizing the potential of tailored architectures for medical imaging tasks. These results underscore the importance of designing domain-specific architectures, demonstrating that model complexity does not necessarily guarantee better performance. Particularly in scenarios with limited datasets, well-designed custom models can surpass pre-trained architectures in diagnostic imaging applications.

Article Details

Section
Scientific Paper

References

OMS, TADDS* Instrumento para la evaluación de los sistemas de atención a la diabetes y a la retinopatía diabética. Organización Mundial de la Salud, 2015. [Online]. Available: https://upsalesiana.ec/ing33ar8r1

L. García Ferrer, M. Ramos López, Y. Molina Santana, M. Chang Hernández, E. Perera Miniet, and K. Galindo Reydmond, “Estrategias en el tratamiento de la retinopatía diabética,” Revista Cubana de Oftalmología, vol. 31, pp. 90–99, 03 2018. [Online]. Available: https://upsalesiana.ec/ing33ar8r2

F. Tablado. (2020) Inteligencia artificial en el trabajo ¿cómo afecta la ia al ámbito laboral de las empresas? Grupo Artico34. [Online]. Available: https://upsalesiana.ec/ing33ar8r3

E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski, M. J. Pencina, and M. W. Kattan, “Assessing the performance of prediction models: a framework for some traditional and novel measures,” PubMed Central, vol. 21, no. 1, pp. 128–138, 2010. [Online]. Available: https://doi.org/10.1097/EDE.0b013e3181c30fb2

L. Rouhiainen, Inteligencia Artificial: 101 cosas que debes saber hoy sobre nuestro futuro. Editorial Alienta, 2018. [Online]. Available: https://upsalesiana.ec/ing33ar8r5

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015. [Online]. Available: https://doi.org/10.1038/nature14539

J. M. Sanchez Muñoz, “Análisis de calidad cartográfica mediante el estudio de la matriz de confusión,” Pensamiento Matematico, vol. 6, no. 2, pp. 9–26, 2016. [Online]. Available: https://upsalesiana.ec/ing33ar8r13

X. Ou, P. Yan, Y. Zhang, B. Tu, G. Zhang, J. Wu, and W. Li, “Moving object detection method via resnet-18 with encoder–decoder structure in complex scenes,” IEEE Access, vol. 7, pp. 108 152–108 160, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2931922

G. Celano, “A resnet-50-based convolutional neural network model for language id identification from speech recordings,” ACL Anthology, 2021. [Online]. Available: https://upsalesiana.ec/ing33ar8r8

E. Todt and B. A. Krinski, Convolutional Neural Network–CNN. Universidade Federal do Paraná, 2019. [Online]. Available: https://upsalesiana.ec/ing33ar8r9

J. Torres, DEEP LEARNING Introducción práctica con Keras. LuLu, 2018. [Online]. Available: https://upsalesiana.ec/ing33ar8r10

C. Zhu, C. U. Idemudia, and W. Feng, “Improved logistic regression model for diabetes prediction by integrating pca and k-means techniques,” Informatics in Medicine Unlocked, vol. 17, p. 100179, 2019. [Online]. Available: https://doi.org/10.1016/j.imu.2019.100179

C. Bonilla Carrion, Redes Convolucionales. Trabajo Fin de Grado Inédito. Universidad de Sevilla, 2020. [Online]. Available: https://upsalesiana.ec/ing33ar8r12

D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, and S. Ridella, “The ‘k’ in k–fold cross validationthe ‘k’ in k-fold cross validation,” in European Symposium on Artificial Neural Networks, Computational Intelligenceand Machine Learning, 2012. [Online]. Available: https://upsalesiana.ec/ing33ar8r15

L. Herguedas Fenoy, Guía práctica clínica para la realización de una retinografía. Universidad de Valladolid, 2018. [Online]. vailable:

https://upsalesiana.ec/ing33ar8r17

J. Chua, C. X. Y. Lim, T. Y. Wong, and C. Sabanayagam, “Diabetic retinopathy in the asiapacific,” Asia-Pacific Journal of Ophthalmology, vol. 7, no. 1, pp. 3–16, 2018. [Online]. Available: https://doi.org/10.22608/APO.2017511

G. Stiglic, P. Kocbek, N. Fijacko, M. Zitnik, K. Verbert, and L. Cilar, “Interpretability of machine learning-based prediction models in healthcare,” WIREs Data Mining and Knowledge Discovery, vol. 10, no. 5, p. e1379, 2020. [Online]. Available: https://doi.org/10.1002/widm.1379

Z.-H. Zhou, “A brief introduction to weakly supervised learning,” National Science Review, vol. 5, no. 1, pp. 44–53, Jan 2018. [Online]. Available: https://doi.org/10.1093/nsr/nwx106

J. Wu, Introduction to Convolutional Neural Networks. LAMDA Group, 2017. [Online]. Available: https://upsalesiana.ec/ing33ar8r22

R. Gonzalez Gouveia, Diferencias entre Inteligencia Artificial vs Machine Learning vs Deep Learning. YouTube, 2021. [Online]. Available: https://upsalesiana.ec/ing33ar8r23

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv, 03 2015. [Online]. Available: https://upsalesiana.ec/ing33ar8r24