Design of a educational electrical energy consumption meter for residential use

Main Article Content

Alan Cuenca Sánchez
Pablo Llumiquinga Eras

Abstract

This study presents the design and implementation of an interactive, user-friendly electronic meter for energy consumption measurement. The proposed system serves as an educational tool for teaching electrical installations, offering a practical and hands-on learning experience. The primary objective is to develop an interactive meter tailored for residential use, capable of providing real-time feedback on energy consumption. Its deployment in educational institutions enhances the comprehension of technical concepts, while also proving beneficial in community outreach workshops focused on residential electrical systems. The system consists of a battery-powered setup featuring an ESP32 module for voltage and current data acquisition, an SPI-connected LCD screen for local data visualization, and a WiFi module for real-time data transmission to a cloud-based database. Designed to be reproducible, cost-effective, and open source, the system represents an accessible and versatile solution for energy monitoring applications. Validation tests were conducted over five months in both laboratory and residential environments. The results demonstrated high measurement accuracy, with error margins below 5% for voltage, current, energy consumption, and estimated costs. These findings confirm that the developed interactive energy meter is a reliable and effective tool for monitoring residential energy usage while fostering educational and community-based learning experiences.

Article Details

Section
Scientific Paper

References

M. Poverda, Eficiencia Energética: Recurso no Aprovechado. OLADE, 2007. [Online]. Available: https://upsalesiana.ec/ing33ar9r1

O. G. Arellano Bastidas, Estudio y análisis de eficiencia energética del sistema eléctrico del hospital IESS-Ibarra. Universidad de las Fuerzas Armadas, Ecuador, 2020. [Online]. Available: https://upsalesiana.ec/ing33ar9r2

A. E. Pilicita-Garrido and D. C. Cevallos-Duque, “Innovación tecnológica de un sistema integral para monitorear el consumo eléctrico,” Ingenius Revista de Ciencia y Tecnología, no. 22, pp. 9–16, 2019. [Online]. Available: https://doi.org/10.17163/ings.n22.2019.01

J. I. Peña Paredes and A. P. Trujillo Gavilanes, Monitorización, análisis y difusión del consumo energético eléctrico de modelo de vivienda del sector residencial de la ciudad de Riobamba. Escuela Superior Politecnica del Chimborazo, Ecuador, 2014. [Online]. Available: https://upsalesiana.ec/ing33ar9r4

N. Benito Marín, Optimización de contratación de electricidad para consumidores domésticos y pymes. Universidad CAros II de Madrid, España, 2016. [Online]. Available: https://upsalesiana.ec/ing33ar9r5

M. Nieves García, Propuesta y evaluación de tratamientos para la mejora de la eficiencia energética en el sector residencial mediante el desarrollo de experimentos económicos. Universitat Jaume I, España, 2017. [Online]. Available: https://upsalesiana.ec/ing33ar9r6

A. Costa, F. Ciniello, G. Grzybowsk, and R. C. Betini, “Development of a prototype for measurement of electricalenergy,” Brazilian Archives of Biology and Technology, vol. 61, 2018. [Online]. Available: https://doi.org/10.1590/1678-4324-smart-2018000032

C. A. Iza Calapaqui and L. J. Latacunga Pilatasig, Diseño y construcción de un prototipo para determinar el consumo de energía eléctrica residencial. Universidad Técnica de Cotopaxi, Ecuador, 2021. [Online]. Available: https://upsalesiana.ec/ing33ar9r8

A. Pitì, G. Verticale, C. Rottondi, A. Capone, and L. Lo Schiavo, “The role of smart meters in enabling real-time energy services for households: The italian case,” Energies, vol. 10, no. 2, 2017. [Online]. Available: https://doi.org/10.3390/en10020199

T. AlSkaif, I. Lampropoulos, M. van den Broek, and W. van Sark, “Gamification-based framework for engagement of residential customers in energy applications,” Energy Research & Social Science, vol. 44, pp. 187–195, 2018. [Online]. Available: https://doi.org/10.1016/j.erss.2018.04.043

J. López, R. Luna, J. Cervantes, J. Meneses Ruiz, and J. Hernández, “Aplicación de tecnologías de medición avanzada (ami) como instrumento para reducción de pérdidas,” Boletin IIE, vol. 39, pp. 180–191, 12 2015. [Online]. Available: https://upsalesiana.ec/ing33ar9r11

L. M. Estrada Albiño, Medidor residencial de energía eléctrica con revisión de consumo de forma inalámbrica. Universidad Tecnica del Norte, Ecuador, 2023. [Online]. Available: https://upsalesiana.ec/ing33ar9r12

D. I. Samaniego Idrovo and D. F. Velesaca Orellana, Diseño e implementación de un medidor de energía electrónico para vivienda, con orientación a la prevención de consumo y ahorro energético. Universidad Poltecnica Salesiana, Ecuador, 2016. [Online]. Available: https://upsalesiana.ec/ing33ar9r13

P. C. Vashist and A. Tripathi, “Design and implementation of smart energy meter with real-time pricing,” in Computational and Experimental Methods in Mechanical Engineering, V. V. Rao, A. Kumaraswamy, S. Kalra, and A. Saxena, Eds. Singapore: Springer Singapore, 2022, pp. 499–507. [Online]. Available: https://doi.org/10.1007/978-981-16-2857-3_49

H. K. Patel, T. Mody, and A. Goyal, “Arduino based smart energy meter using gsm,” in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1–6. [Online]. Available: https://doi.org/10.1109/IoT-SIU.2019.8777490

E. A. Quintero Salazar, “Medidor electrónico interactivo de consumo de energía eléctrica para uso residencial,” Prospectiva, vol. 14, no. 1, pp. 55–70, 2016. [Online]. Available: https://doi.org/10.15665/rp.v14i1.639

A. E. Pilicita-Garrido and D. C. Cevallos-Duque, “Innovación tecnológica de un sistema integral para monitorear el consumo eléctrico,” Ingenius, Revista de Ciencia y Tecnología, no. 22, pp. 9–16, 2019. [Online]. Available: https://doi.org/10.17163/ings.n22.2019.01

J. S. Echeverría, , and J. García-Echeverría, “edición avanzada inteligente, retos al consumo responsable del servicio público domiciliario de energía en Colombia,” Revista chilena de derecho y tecnología, vol. 11, pp. 47–62, 12 2022. [Online]. Available: http://dx.doi.org/10.5354/0719-2584.2021.64167

A. M. Díaz Rodríguez, J. B. Cogollos Martínez, J. Peña Acción, A. Cogollos Izaguirre, and R. González Álvarez, “Modelo matemático para predecir el consumo de energía eléctrica en la universidad de cienfuegos,” Universidad y Sociedad, vol. 12, no. 4, pp. 45–56, 2020. [Online]. Available: https://upsalesiana.ec/ing33ar9r19

Z. de la Cruz Severiche Maury, A. Fernández Vilas, and R. P. Díaz Redondo, “Low-cost hem with arduino and zigbee technologies in the energy sector in colombia,” Energies, vol. 15, no. 10, p. 3819, May 2022. [Online]. Available: http://dx.doi.org/10.3390/en15103819

W. Luan, J. Peng, M. Maras, J. Lo, and B. Harapnuk, “Smart meter data analytics for distribution network connectivity verification,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1964–1971, 2015. [Online]. Available: https://doi.org/10.1109/TSG.2015.2421304

T. Hengyu, W. Huanning, H. Yan, Z. Zhihua, Y. Hejun, and L. Yuan, “Real-time monitoring method for smart meter measurement performance,” in 2021 5th International Conference on Smart Grid and Smart Cities (ICSGSC), 2021, pp. 72–76. [Online]. Available: https://doi.org/10.1109/ICSGSC52434.2021.9490438

G. Artale, A. Cataliotti, V. Cosentino, S. Guaiana, D. Di Cara, N. Panzavecchia, G. Tiné, N. Dipaola, and M. G. Sambataro, “Pq metrics implementation on low cost smart metering platforms. a case study analysis,” in 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems (AMPS), 2018, pp. 1–6. [Online]. Available: https://doi.org/10.1109/AMPS.2018.8494866

A. S. Metering, S. Visalatchi, and K. K. Sandeep, “Smart energy metering and power theft control using arduino & gsm,” in 2017 2nd nternational Conference for Convergence in Technology (I2CT), 2017, pp. 858–961. [Online]. Available: https://doi.org/10.1109/I2CT.2017.8226251

N. S. Živic, O. Ur-Rehman, and C. Ruland, “Evolution of smart metering systems,” in 2015 23rd Telecommunications Forum Telfor (TELFOR), 2015, pp. 635–638. [Online]. Available: https://doi.org/10.1109/TELFOR.2015.7377547

J. A. Arévalo-López, N. Ávila Peñuela, E. Estupiñan-Escalante, O. A. Parra-Urrego, and D. A. Cano-Tirado, “Design and implementation of an energy metering system to recognize the household electrical energy consumption pattern through an iot network,” in 2021 Joint Conference - 11th International Conference on Energy Efficiency in Domestic Appliances and Lighting & 17th International Symposium on the Science and Technology of Lighting (EEDAL/LS:17), 2022, pp. 1–6. [Online]. Available: https://upsalesiana.ec/ing33ar9r26

M. A. Alahmad, P. G. Wheeler, A. Schwer, J. Eiden, and A. Brumbaugh, “A comparative study of three feedback devices for residential real-time energy monitoring,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 2002–2013, 2012. [Online]. Available: https://doi.org/10.1109/TIE.2011.2165456

OEM. (2023) Openenergymonitor. GitHub. [Online]. Available: https://upsalesiana.ec/ing33ar9r28

ARCERNNR, Pliego tarifario del servicio público de energía eléctrica año 2023. Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables, Ecuador, 2023. [Online]. Available: https://upsalesiana.ec/ing33ar9r29

INEN, NTE INEN-IEC 62053-21: Equipos de medida de energía eléctrica. Requisitos particulares. Parte 21: Contadores estáticos de energía activa (clases 1 y 2). Instituto Ecuatoriano de Normalización, Ecuador, 2010. [Online]. Available: https://upsalesiana.ec/ing33ar9r30

ARCERNNR, Regulación ARCONEL 001/2020. Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables, Ecuador, 2023. [Online]. Available: https://upsalesiana.ec/ing33ar9r31