Parametric Study for Optimization of the Ice Tube Generator of Laboratory

Main Article Content

Rocío Guapulema
Víctor Hidalgo


In Ecuador, there is a large energy consumption by air conditioning and refrigeration in the industrial, commercial and residential sectors. A maximum electricity demand reduction method is to incorporate an optimal cooling thermal energy storage system. The main objective of this work was to develop a parametric study of laboratory ice tube generator for an after optimization. For that, the main parameters were studied, which are: water storage temperature, refrigerant temperature in the evaporator and condenser, ice subcooling temperature and ice formation speed. Two outstanding parameters that intervened in the ice formation process were the place environmental conditions and the water temperature used, when the environmental temperature decreased, thermal load also decreased and condenser efficiency improved, which directly influenced the efficiency of the equipment. The instability observed in the first hour of test intervened in the final water temperature, final temperature ranged from 1.1 ° C to -0.4 ° C in three hours.
Abstract 311 | PDF (Español (España)) Downloads 267 PDF Downloads 28 HTML (Español (España)) Downloads 36 HTML Downloads 54 EPUB (Español (España)) Downloads 5 XML (Español (España)) Downloads 0


[1] A. Saito, “Recent advances in research on cold thermal energy storage,” International Journal of Refrigeration, vol. 25, no. 2, pp. 177–189, 2002. [Online]. Available:
[2] I. Dincer, “On thermal energy storage systems and applications in buildings,” Energy and Buildings, vol. 34, no. 4, pp. 377–388, 2002. [Online]. Available:
[3] J. H. M. Neto and M. Krarti, “Parametric analysis of an internal-melt ice-on-coil tank,” ASHRAE, vol. 103, no. 2, pp. 322–333, 1997. [Online]. Available:
[4] S. Sanaye and A. Shirazi, “Thermo-economic optimization of an ice thermal energy storage system for air-conditioning applications,” Energy and Buildings, vol. 60, pp. 100–109, 2013. [Online]. Available:
[5] O. J. Venturini, M. d. S. Valente de Almeida, and E. Silva, “Optimización de un sistema de termoacumulación en un tanque de hielo con expansión directa,” Asociacion Brasileña de Ingeniería y Ciencia Mecánicas, 1999. [Online]. Available:
[6] M. H. Rahdar, A. Emamzadeh, and A. Ataei, “A comparative study on pcm and ice thermal energy storage tank for air-conditioning systems in office
buildings,” Applied Thermal Engineering, vol. 96, pp. 391–399, 2016. [Online]. Available:
[7] Z. Kang, R. Wang, X. Zhou, and G. Feng, “Research status of ice-storage air-conditioning system,” Procedia Engineering, vol. 205, pp. 1741–1747, 2017, 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19-22 October 2017, Jinan, China. [Online]. Available:
[8] P. A. Intemann and M. Kazmierczak, “Heat transfer and ice formations deposited upon cold tube bundles immersed in flowing wateri. convection analysis,” International Journal of Heat and Mass Transfer, vol. 40, no. 3, pp. 557–572, 1997. [Online]. Available:
[9] M. H. Rahdar, M. Heidari, A. Ataei, and J.-K. Choi, “Modeling and optimization of r-717 and r-134a ice thermal energy storage air conditioning systems using nsga-ii and mopso algorithms,” Applied Thermal Engineering, vol. 96, pp. 217–227, 2016. [Online]. Available:
[10] J. Pu, G. Liu, and X. Feng, “Cumulative exergy analysis of ice thermal storage air conditioning system,” Applied Energy, vol. 93, pp. 564–569, 2012, (1) Green Energy; (2)Special Section from papers presented at the 2nd International Enery 2030 Conf. [Online]. Available:
[11] Y. Li, C. Yang, Z. Yan, B. Guo, H. Yuan, J. Zhao, and N. Mei, “Analysis of the icing and melting process in a coil heat exchanger,” Energy Procedia, vol. 136, pp. 450 –455, 2017, 4th International Conference on Energy and Environment Research ICEER 2017. [Online]. Available:
[12] ARCONEL. (2019) Balance nacional de energía eléctrica. [Online]. Available:
[13] CONELEC. (2013) Plan maestro de electrificación 2013-2022. aspectos de sustentabilidad y sostenibilidad social y ambiental. [Online]. Available:
[14] S. Sanaye and A. Shirazi, “Four e analysis and multi-objective optimization of an ice thermal energy storage for air-conditioning applications,” International Journal of Refrigeration, vol. 36, no. 3, pp. 828–841, 2013. [Online]. Available:
[15] X. Song, T. Zhu, L. Liu, and Z. Cao, “Study on optimal ice storage capacity of ice thermal storage system and its influence factors,” Energy Conversion and Management, vol. 164, pp. 288–300, 2018. [Online]. Available:
[16] H. H. Sait, “Experimental study of water solidification phenomenon for ice-on-coil thermal energy storage application utilizing falling film,” Applied Thermal Engineering, vol. 146, pp. 135–145, 2019. [Online]. Available:
[17] G. D. Shinde and P. R. Suresh, “A review on influence of geometry and other initial conditions on the performance of a pcm based energy storage system,” International Journal of Thermal Technologies, vol. 4, no. 3, pp. 214–222, 2014. [Online]. Available:
[18] R. A. Jordan, L. A. B. Cortez, V. Silveira Jr., M. E. R. M. Cavalcanti-Mata, and F. D. de Oliveira, “Modeling and testing of an ice bank for milk cooling after milking,” Engenharia Agrícola, vol. 38, pp. 510–517, 08 2018. [Online]. Available:
[19] K. A. R. Ismail, M. M. Gonçalves, and F. A. M. Lino, “Solidification of pcm around a finned tube: Modeling and experimental validation,” Journal
of Basic and Applied Research International,vol. 12, no. 2, pp. 115–128, 2015. [Online]. Available:
[20] R. P. Guapulema Maygualema and E. A. Jácome Domínguez, “Diseño y construcción de un generador de hielo tubular para laboratorio,” 2013. [Online]. Available: [21] H. H. Sait, A. Hussain, and A. M. Selim, “Experimental investigation on freezing of water falling
film on vertical bank of cold horizontal tubes,” Journal of thermal science and engineering applications, vol. 4, no. 4, p. 041006, 2012. [Online]. Available:
[22] F. Wang, C. Liang, M. Yang, C. Fan, and X. Zhang, “Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers,” Applied Thermal Engineering, vol. 75, pp. 1126–1132, 2015. [Online]. Available:
[23] H. G. Ramírez-Hernández, F. A. Sánchez-Cruz, F. J. Solorio-Ordaz, and S. Martínez-Martínez, “An experimental study of heat transfer on a tube bank under frost formation conditions,” International Journal of Refrigeration, vol. 102, pp. 35 –46, 2019. [Online]. Available:
[24] S. K. Wang, Handbook of Air Conditioning and Refrigeration, mcgraw-hill ed., 2000. [Online]. Available:
[25] ASHRAE, ASHRAE handbook : fundamentals, 2001. [Online]. Available:
[26] Y. Çengel and M. Boles, Termodinámica, 2015. [Online]. Available:
[27] J. P. Holman, Transferencia de calor, 1998. [Online]. Available:
[28] F. Taboas Touceda, “Estudio del proceso de ebullición forzada de la mezcla amoniaco/agua en intercambiadores de placas para equipos de
refrigeración por absorción,” Ph.D. dissertation, 2006. [Online]. Available: