Estudio paramétrico para optimización de un generador de hielo tubular de laboratorio

Contenido principal del artículo

Resumen

En Ecuador existe un gran consumo energético por climatización y refrigeración en los sectores industrial, comercial y residencial. Un método para reducir la demanda eléctrica máxima es incorporar un sistema óptimo de almacenamiento de energía térmica de refrigeración. Este trabajo tiene por objetivo realizar el estudio paramétrico de un generador de hielo tubular de laboratorio para su posterior optimización. Se estudiaron los principales parámetros que intervienen en la formación de hielo como temperatura del agua en el reservorio, temperaturas del refrigerante en el evaporador y condensador, temperatura de subenfriamiento del hielo y velocidad de formación de hielo. Los parámetros destacados que intervinieron en el proceso fueron las condiciones ambientales del lugar y la temperatura del agua utilizada. Al disminuir la temperatura ambiental, disminuye la carga térmica y mejora la eficiencia del condensador, el cual influye directamente sobre la eficiencia del equipo. La inestabilidad observada en la primera hora de prueba intervino en la temperatura final del agua, la misma que varió en el rango de 1,1 °C a –0,4 °C en 3 horas.

Detalles del artículo

Sección
Artículo Científico
Biografía del autor/a

Víctor Hidalgo

Profesor Agregado III, Departamento de Ingeniería Mecánic, Escuela Politécnica Nacional Doctor of Science in Power Engineering and Engineering Thermal Physics (Dsc.), Tsinghua University. Masters of Science in Fluid Mechanics, China University of Mining and Technology. Mechanical Engineering degree, Escuela Politécnica Nacional.

Referencias

[1] A. Saito, “Recent advances in research on cold thermal energy storage,” International Journal of Refrigeration, vol. 25, no. 2, pp. 177–189, 2002. [Online]. Available: https://doi.org/10.1016/S0140-7007(01)00078-0
[2] I. Dincer, “On thermal energy storage systems and applications in buildings,” Energy and Buildings, vol. 34, no. 4, pp. 377–388, 2002. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378778801001268
[3] J. H. M. Neto and M. Krarti, “Parametric analysis of an internal-melt ice-on-coil tank,” ASHRAE, vol. 103, no. 2, pp. 322–333, 1997. [Online]. Available: https://bit.ly/2PyxJ3r
[4] S. Sanaye and A. Shirazi, “Thermo-economic optimization of an ice thermal energy storage system for air-conditioning applications,” Energy and Buildings, vol. 60, pp. 100–109, 2013. [Online]. Available: https://doi.org/10.1016/j.enbuild.2012.12.040
[5] O. J. Venturini, M. d. S. Valente de Almeida, and E. Silva, “Optimización de un sistema de termoacumulación en un tanque de hielo con expansión directa,” Asociacion Brasileña de Ingeniería y Ciencia Mecánicas, 1999. [Online]. Available: http://bit.ly/2WaawaN
[6] M. H. Rahdar, A. Emamzadeh, and A. Ataei, “A comparative study on pcm and ice thermal energy storage tank for air-conditioning systems in office
buildings,” Applied Thermal Engineering, vol. 96, pp. 391–399, 2016. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2015.11.107
[7] Z. Kang, R. Wang, X. Zhou, and G. Feng, “Research status of ice-storage air-conditioning system,” Procedia Engineering, vol. 205, pp. 1741–1747, 2017, 10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017, 19-22 October 2017, Jinan, China. [Online]. Available: https://doi.org/10.1016/j.proeng.2017.10.020
[8] P. A. Intemann and M. Kazmierczak, “Heat transfer and ice formations deposited upon cold tube bundles immersed in flowing wateri. convection analysis,” International Journal of Heat and Mass Transfer, vol. 40, no. 3, pp. 557–572, 1997. [Online]. Available: https://doi.org/10.1016/0017-9310(96)00121-4
[9] M. H. Rahdar, M. Heidari, A. Ataei, and J.-K. Choi, “Modeling and optimization of r-717 and r-134a ice thermal energy storage air conditioning systems using nsga-ii and mopso algorithms,” Applied Thermal Engineering, vol. 96, pp. 217–227, 2016. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2015.11.068
[10] J. Pu, G. Liu, and X. Feng, “Cumulative exergy analysis of ice thermal storage air conditioning system,” Applied Energy, vol. 93, pp. 564–569, 2012, (1) Green Energy; (2)Special Section from papers presented at the 2nd International Enery 2030 Conf. [Online]. Available: https://doi.org/10.1016/j.apenergy.2011.12.003
[11] Y. Li, C. Yang, Z. Yan, B. Guo, H. Yuan, J. Zhao, and N. Mei, “Analysis of the icing and melting process in a coil heat exchanger,” Energy Procedia, vol. 136, pp. 450 –455, 2017, 4th International Conference on Energy and Environment Research ICEER 2017. [Online]. Available: https://doi.org/10.1016/j.egypro.2017.10.302
[12] ARCONEL. (2019) Balance nacional de energía eléctrica. [Online]. Available: http://bit.ly/2PiU2eS
[13] CONELEC. (2013) Plan maestro de electrificación 2013-2022. aspectos de sustentabilidad y sostenibilidad social y ambiental. [Online]. Available: http://bit.ly/33UgUFA
[14] S. Sanaye and A. Shirazi, “Four e analysis and multi-objective optimization of an ice thermal energy storage for air-conditioning applications,” International Journal of Refrigeration, vol. 36, no. 3, pp. 828–841, 2013. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2012.10.014
[15] X. Song, T. Zhu, L. Liu, and Z. Cao, “Study on optimal ice storage capacity of ice thermal storage system and its influence factors,” Energy Conversion and Management, vol. 164, pp. 288–300, 2018. [Online]. Available: https://doi.org/10.1016/j.enconman.2018.03.007
[16] H. H. Sait, “Experimental study of water solidification phenomenon for ice-on-coil thermal energy storage application utilizing falling film,” Applied Thermal Engineering, vol. 146, pp. 135–145, 2019. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2018.09.116
[17] G. D. Shinde and P. R. Suresh, “A review on influence of geometry and other initial conditions on the performance of a pcm based energy storage system,” International Journal of Thermal Technologies, vol. 4, no. 3, pp. 214–222, 2014. [Online]. Available: http://bit.ly/31KAL8A
[18] R. A. Jordan, L. A. B. Cortez, V. Silveira Jr., M. E. R. M. Cavalcanti-Mata, and F. D. de Oliveira, “Modeling and testing of an ice bank for milk cooling after milking,” Engenharia Agrícola, vol. 38, pp. 510–517, 08 2018. [Online]. Available: https://bit.ly/2E6ZACD
[19] K. A. R. Ismail, M. M. Gonçalves, and F. A. M. Lino, “Solidification of pcm around a finned tube: Modeling and experimental validation,” Journal
of Basic and Applied Research International,vol. 12, no. 2, pp. 115–128, 2015. [Online]. Available: http://bit.ly/3410fjU
[20] R. P. Guapulema Maygualema and E. A. Jácome Domínguez, “Diseño y construcción de un generador de hielo tubular para laboratorio,” 2013. [Online]. Available: https://bit.ly/2RETbq9 [21] H. H. Sait, A. Hussain, and A. M. Selim, “Experimental investigation on freezing of water falling
film on vertical bank of cold horizontal tubes,” Journal of thermal science and engineering applications, vol. 4, no. 4, p. 041006, 2012. [Online]. Available: https://doi.org/10.1115/1.4006314
[22] F. Wang, C. Liang, M. Yang, C. Fan, and X. Zhang, “Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers,” Applied Thermal Engineering, vol. 75, pp. 1126–1132, 2015. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2014.10.090
[23] H. G. Ramírez-Hernández, F. A. Sánchez-Cruz, F. J. Solorio-Ordaz, and S. Martínez-Martínez, “An experimental study of heat transfer on a tube bank under frost formation conditions,” International Journal of Refrigeration, vol. 102, pp. 35 –46, 2019. [Online]. Available: https://doi.org/10.1016/j.ijrefrig.2019.01.031
[24] S. K. Wang, Handbook of Air Conditioning and Refrigeration, mcgraw-hill ed., 2000. [Online]. Available: http://bit.ly/344CVlj
[25] ASHRAE, ASHRAE handbook : fundamentals, 2001. [Online]. Available: https://bit.ly/2LMExtf
[26] Y. Çengel and M. Boles, Termodinámica, 2015. [Online]. Available: https://bit.ly/2E5v8J3
[27] J. P. Holman, Transferencia de calor, 1998. [Online]. Available: https://bit.ly/2PdyO1N
[28] F. Taboas Touceda, “Estudio del proceso de ebullición forzada de la mezcla amoniaco/agua en intercambiadores de placas para equipos de
refrigeración por absorción,” Ph.D. dissertation, 2006. [Online]. Available: https://bit.ly/34b58Xk