D-BLAST MIMO Perfomance Analysis over SDR-USRP

Main Article Content

Abstract

This paper describes the implementation of technique based on D–BLAST spatial multiplexing over Software Defined Radio (SDR) equipment; specifically, using Universal Software Peripheral Radio (USRP) Ettus Research x310; with the aim of solve the problem of spatial diversity that the MIMO Alamouti scheme has, since it is not possible to increase the number of antennas of the transmitter with respect to the receiver. The simulation scenario was in an indoor environment using graphical programming tools with the Labview Communications Software, achieving a more robust coding design based on the nonlinearity of matrix equations, in this way, the effects of interference were mitigating through the redundancy of information due to the increase of the antennas at the transmitter. The experimental results evaluated were bit error rate (BER) and symbol error rate (SER) to determine the effectiveness of spatial diversity. The gain achieved was around 10dB and 7dB in MIMO 2×2 and MIMO 3×2 respectively, using the symmetric D–BLAST technique.

Article Details

Section
Telecommunications
Author Biographies

Freddy Cárdenas

Los estudios de la secundaria se realizaron en el Colegio Técnico Ricaurte de la ciudad de Cuenca-Ecuador. Él es graduado en la Universidad Politécnica Salesiana en la carrera de ingeniería Electrónica con mención en Telecomunicaciones.

Jairo Otáñez

El finalizo sus estudios de la secundaria en el Instituto Carlos Cisneros de la ciudad de Riobamba. Él es graduado de la Universidad Politécnica Salesiana en la carrera de ingeniería Electrónica mención en Telecomunicaciones.

Juan Inga

He is graduated from the Universidad Politécnica Salesiana receive the Mg.T. degree in Telecommunications Management Program. He is researcher at the Centre Research. He is member of the Telecommunications Research Group (GITEL). He is currently working toward his Ph.D degree in Engineering with the Universidad Pontificia Bolivariana – Medellín. His research interests include wireless networks, compressed sensing, home area network, smart grid, channel modeling. He is a student member of the IEEE

Esteban Inga

Recibe su grado de Ingeniero Electrónico, por la Universidad Politécnica Salesiana en 2001, Cuenca; recibió su Maestría en Educación y Desarrollo Social de la Universidad Tecnológica Equinoccial en 2008, Quito - Ecuador. En 2017 recibió su Maestría en Ingeniería en la Universidad Pontificia Bolivariana, Medellín, Colombia. En 2018 obtuvo su doctorado de la Universidad Pontificia Bolivariana de Medellíın - Colombia con mención honorífica Magna Cum Laude que se otorga cuando la tesis excede las expectativas de lo que se propuso en el proyecto, por concepto unánime de los jurados, y se demuestra la producción científica. Es el Coordinador del Grupo de Investigación GIREI, es Coordinador del Programa de Maestría en Electricidad. Sus intereses de investigación son las redes de comunicaciones, la infraestructura de medición avanzada, la red eléctrica inteligente, las redes inalámbricas heterogéneas, la planificación de redes inalámbricas y ciudades inteligentes. Es profesor de Posgrados de la Universidad Politécnica Salesiana, Quito, Ecuador.

Andrés Ortega

Se gradúa de la Universidad Politécnica Salesiana como Ingeniero Electrónico en 2010, Cuenca, posteriormente obtiene su grado de Magíster del Programa de Gestión de las Telecomunicaciones en 2013. En 2018 obtuvo su doctorado de la Universita degli Studi di Ferrera en Ferrara Italia. Es investigador de la Universidad Tecnológica ECOTEC en Guayaquil Ecuador y miembro del Centro de Estudios y Desarrollo Sostenible (CEDS) adscrito a la ECOTEC.

References

[1] S. Xu, S. Xu, and Y. Tanaka, “Dynamic resource reallocation for 5G with OFDMA in multiple user MIMO RoF-WDMPON,” 2016, pp. 480–484. [Online]. Available: https://doi.org/10.1109/APCC.2015.7412561
[2] M. Danneberg, N. Michailow, I. Gaspar, M. Matthe, D. Zhang, L. L. Mendesy, and G. Fettweis, “Implementation of a 2 by 2 MIMO-GFDM transceiver for robust 5G networks,” 2015, pp. 236–240. [Online]. Available: https://doi.org/10.1109/ISWCS.2015.7454336
[3] N. Prasad and M. K. Varanasi, “Analysis and optimization of diagonally layered lattice schemes for MIMO fading channels,” IEEE transactions on information theory, vol. 54, no. 3, pp. 1162–1185, 2008. [Online]. Available: https://doi.org/10.1109/TIT.2007.915701
[4] B. Clerckx and Claude Oestges, MIMO Wireless Networks. Academic Press Publications, 2013. [Online]. Available: https://doi.org/10.1016/C2010-0-66925-2
[5] Y. K. Chang, F. B. Ueng, and K. Z. Wu, “A novel MIMO-GFDM receiver for next generation communication,” Transactions on Emerging Telecommunications Technologies, vol. 29, no. 6, pp. 1–15, 2018. [Online]. Available: https://doi.org/10.1002/ett.3288
[6] M. Gupta and G. Murmu, “Experimental Study of Fading using Alamouti Space-Time Block Code,” no. 1. IEEE, 2018, pp. 0–5. [Online]. Available: https://doi.org/10.1109/SCEECS.2018.8546851
[7] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge University Press, 2011, vol. 158. [Online]. Available: https://doi.org/10.1007/978-1-4419-6111-2_2
[8] O. Shental, S. Venkatesan, A. Ashikhmin, and R. A. Valenzuela, “Massive BLAST: An architecture for realizing ultra-high data rates for large-scale MIMO,” IEEE WIRELESS COMMUNICATIONS LETTERS, vol. 7, no. 3, pp. 404–407, 2017. [Online]. Available: https://doi.org/10.1109/LWC.2017.2780079
[9] J. J. Mroczek, M. J. Gans, and L. L. Joiner, “Performance of frequency hopping d-blast mimo architecture using ldpc and bpsk,” in MILCOM 2015-2015 IEEE Military Communications Conference. IEEE, 2015, pp. 860–865. [Online]. Available: https://doi.org/10.1109/MILCOM.2015.7357553
[10] A. Sibille, C. Oestges, and A. Zanella, MIMO: From Theory to Implementation. Academic Press Publications, 2010. [Online]. Available: https://bit.ly/3s2o9uk
[11] G. C. Daily and P. A. Matson, “Ecosystem services: From theory to implementation,” Proceedings of the National Academy of Sciences, vol. 105, no. 28, pp. 9455–9456, 2008. [Online]. Available: https://doi.org/10.1073/pnas.0804960105
[12] Y. Liu, B. Chen, J. J. Mroczek, J. E. Malowicki, and R. J. Michalak, “Robust mimo communications against antenna blockage and interference,” in MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). IEEE, 2019, pp. 7–12. [Online]. Available: https://doi.org/10.1109/MILCOM47813.2019.9020916
[13] V. Garg, “Fourth generation systems and new wireless technologies,” en. Wireless Communications & Networking. Elsevier, pp. 1–22, 2007.
[14] N. T. Hieu, N. T. Tu, L. T. Danh, A. N. Duc, and B. H. Phu, “Design and implementation of MIMO-STBC systems on FPGA hardware,” International Conference on Advanced Technologies for Communications, pp. 274–277, 2012. [Online]. Available: https://doi.org/10.1109/ATC.2012.6404275
[15] J. Kaderka and T. Urbanec, “Time and sample rate synchronization of RTLSDR using a GPS receiver,” in 2020 30th International Conference Radioelektronika (RADIOELEKTRONIKA), 2020, pp. 4–7. [Online]. Available: https://doi.org/10.1109/RADIOELEKTRONIKA49387.2020.9092398
[16] G. Soni, G. Kaur, and V. K. Banga, “Implementation & BER analysis of 2×2 MIMO Using USRP 2920- universal software radio peripheral,” in 2016 Second International Conference on Computational Intelligence Communication Technology (CICT). IEEE, 2016, pp. 523–527. [Online]. Available: https://doi.org/10.1109/CICT.2016.109
[17] V. S. Muradi, R. K. Paithane, A. Ahmed, and A. Pawar, “Spectrum sensing in cognitive radio using Labview and NI USRP,” in 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, 2018, pp. 1316–1319. [Online]. Available: https://doi.org/10.1109/ICISC.2018.8399019
[18] A. Yanza-Verdugo, C. Pucha-Cabrera, and J. Inga-Ortega, “Compressive Sensing Based Channel Estimator and LDPC Theory for OFDM using SDR,” Ingenius. Revista de Ciencia y Tecnología, vol. 23, no. 1, pp. 74–85, 2020. [Online]. Available: https://doi.org/10.17163/ings.n23.2020.07
[19] N. Narukawa, T. Fukushima, K. Honda, and K. Ogawa, “64 × 64 MIMO antenna arranged in a daisy chain array structure at 50 Gbps capacity,” in 2019 URSI International Symposium on Electromagnetic Theory (EMTS). URSI, 2019, pp. 2019–2022. [Online]. Available: https://doi.org/10.23919/URSI-EMTS.2019.8931517
[20] R. Prieto, A. Abril, and A. Ortega, “Experimental Alamouti-STBC Using LDPC Codes for MIMO Channels over SDR Systems,” in 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017, pp. 1–5. [Online]. Available: https://doi.org/10.1109/CCECE.2017.7946842
[21] V. Soria, G. V. Arevalo, P. Avila, F. Tello, and C. G. Santamaria, “Performance comparison of 2×2 and 4×4 V-BLAST and Alamouti MIMO systems,” in 2018 IEEE 3rd Ecuador Technical Chapters Meeting, ETCM 2018, 2018, pp. 18–21. [Online]. Available: https://doi.org/10.1109/ETCM.2018.8580317
[22] J. J. Anguís Horno, Redes de Área Local Inalámbricas: Diseño de la WLAN de Wheelers Lane Technology College. Escuela Superior de Ingenieros Universidad de Sevilla, 2008. [Online]. Available: https://bit.ly/3IFbsM9
[23] M. Sellathurai and S. Haykin, Space-Time Layered Information Processing for Wireless Communications. Wiley & Sons, 2009. [Online]. Available: https://bit.ly/3oPIjG3
[24] J. R. Hampton, Introduction to MIMO communications. Cambridge university press, 2013. [Online]. Available: https://bit.ly/3DQyhc2
[25] V. Puig Borrás, “Simulación computacional y paralelización de un sistema de comunicaciones inalámbrico MIMO: Estimación de canal y decodificación de señales,” Master’s thesis, Universidad Politécnica de Valencia, 2011. [Online]. Available: https://bit.ly/3IWlitc
[26] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communications with MATLAB. Wiley & Sons, 2010, vol. 11, no. 3. [Online]. Available: https://bit.ly/3m3QgFN