Comparative analysis of thermal comfort of a single-family house in LSF and brick masonry
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 4.0 Ecuador license: they can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to the Universidad Politécnica Salesiana of Ecuador for printed editions.
It is also stated that they have respected the ethical principles of research and are free from any conflict of interest. The author(s) certify that this work has not been published, nor is it under consideration for publication in any other journal or editorial work.
The author (s) are responsible for their content and have contributed to the conception, design and completion of the work, analysis and interpretation of data, and to have participated in the writing of the text and its revisions, as well as in the approval of the version which is finally referred to as an attachment.
References
V. Arengo Piragine, J. Cruz Breard, and C. Pilar, “Anteproyecto de viviendas sociales con steel framing en corrientes. comparación con sistema húmedo tradicional,” Arquitecno, no. 15, p. 37, 2020. [Online]. Available: http://dx.doi.org/10.30972/arq.0154386
A. O. Venegas Tomalá, Evaluación de la energía contenida, emisiones de CO2 y material particulado en la fabricación del ladrillo semimecanizado tochano en Cuenca, a través del análisis de ciclo de vida (ACV). Universidad de Cuenca, Ecuador, 2018. [Online]. Available: https://bit.ly/2Soq1IU
M. T. Baquero L. and F. Quesada M., “Eficiencia energética en el sector residencial de la ciudad de Cuenca, Ecuador,” Maskana, vol. 7, no. 2, pp. 147–165, 2016. [Online]. Available: https://doi.org/10.18537/mskn.07.02.11
M. Manzan, E. Zandegiacomo De Zorzi, and W. Lorenzi, “Numerical simulation and sensitivity analysis of a steel framed internal insulation system,” Energy and Buildings, vol. 158, pp. 1703–1710, 2018. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.069
M. Bernardes, S. G. Nilsson, M. S. Martins, and A. Romanini, “Comparativo econômico da aplicação do sistema light steel framing em habitação de interesse social,” Revista de Arquitetura IMED, vol. 1, no. 1, pp. 31–40, 2012. [Online]. Available: https://doi.org/10.18256/2318-1109/arqimed.v1n1p31-40
L. M. Lupan, D. L. Manea, and L. M. Moga, “Improving thermal performance of the wall panels using slotted steel stud framing,” Procedia Technology, vol. 22, pp. 351–357, 2016. [Online]. Available: https://doi.org/10.1016/j.protcy.2016.01.108
INEC. (2017) Encuesta de edificaciones 2017. Instituto Nacional de Estadísticas y Censos del Ecuador. [Online]. Available: https://bit.ly/3NsvnyW
MIDUVI, NEC-11. Vivienda De Hasta 2 Pisos Con Luces De Hasta 4.0 M. Ministerio de Desarrollo Urbano y Vivienda. República del Ecuador., 2011. [Online]. Available: https://bit.ly/3HU0uCk
E. Roque and P. Santos, “The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position,” Buildings, vol. 7, no. 1, 2017. [Online]. Available: https://doi.org/10.3390/buildings7010013
A. M. Sarmanho Freitas and R. C. Moraes de Crasto, Steel Framing: Arquitectura. Instituto Latinoamericano del Fierro y el Acero - ILAFA, 2007. [Online]. Available: https://bit.ly/3QOMYUy
J. L. Lamus Rodríguez, “Análisis de viabilidad económica: sistema constructivo light steel framing en Colombia,” Master’s thesis, Universidad de los Andes. Colombia, 2015. [Online]. Available: https://bit.ly/3HRQfhU
E. Rodrigues, N. Soares, M. S. Fernandes, A. R. Gaspar, Álvaro Gomes, and J. J. Costa, “An integrated energy performance-driven generative design methodology to foster modular lightweight steel framed dwellings in hot climates,” Energy for Sustainable Development, vol. 44, pp. 21–36, 2018. [Online]. Available: https://doi.org/10.1016/j.esd.2018.02.006
B. Schafer, D. Ayhan, J. Leng, P. Liu, D. Padilla-Llano, K. Peterman, M. Stehman, S. Buonopane, M. Eatherton, R. Madsen, B. Manley, C. Moen, N. Nakata, C. Rogers, and C. Yu, “Seismic response and engineering of cold-formed steel framed buildings,” Structures, vol. 8, pp. 197–212, 2016. [Online]. Available: https://doi.org/10.1016/j.istruc.2016.05.009
T. Tafsirojjaman, S. Fawzia, D. Thambiratnam, and X. Zhao, “Seismic strengthening of rigid steel frame with cfrp,” Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 334–347, 2019. [Online]. Available: https://doi.org/10.1016/j.acme.2018.08.007
J. R. da Silva Nogueira, I. J. Apolônio Callejas, and L. Cleonice Durante, “Desempenho de painel de vedação vertical externa em light steel framing composto por placas de madeira mineralizada,” Ambiente Construido, vol. 18, no. 3, 2018. [Online]. Available: https://doi.org/10.1590/s1678-86212018000300282
F. Bolina, R. Christ, A. Metzler, U. Quinino, and B. Tutikian, “Comparison of the fire resistance of two structural wall systems in light steel framing,” DYNA, vol. 84, no. 201, pp. 123–128, abr. 2017. [Online]. Available: https://doi.org/10.15446/dyna.v84n201.57487
E. Yandzio, R. M. Lawson, and A. G. J. Way, Light steel framing in residential construction. SCI. Silwood Par, Ascot, Berkshire, 2015. [Online]. Available: https://bit.ly/3xXZhoV
P. E. Amador Salomão, A. D. Alves Soares, A. L. P. Lorentz, and L. T. Gonçalves de Paula, “Conventional masonry and light steel framing comparative analysis: a case study in unifammary residence in teófilo otoni, mg,” Research, Society and Development, vol. 8, no. 9, p. e14891268, Jun. 2019. [Online]. Available: https://doi.org/10.33448/rsd-v8i9.1268
H. OlivieriIvan, I. C. Alves Barbosa, A. C. Da Rocha, A. Denis Granja, and P. S. Pucharelli Fontanini, “A utilização de novos sistemas construtivos para a redução no uso de insumos nos canteiros de obras: Light steel framing,” Ambiente Construido, vol. 17, no. 4, 2017. [Online]. Available: https://doi.org/10.1590/s1678-86212017000400184
MIDUVI, Acuerdo Ministerial: Reglamento para validación de tipologías y planes masa para proyectos de vivienda de interés social. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2019. [Online]. Available: https://bit.ly/3HSg3ul
——, Eficiencia energética en edificaciones residenciales NEC-HS-EE. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2018. [Online]. Available: https://bit.ly/39U5CtD
——, Eficiencia energética en la construcción en Ecuador. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2011. [Online]. Available: https://bit.ly/39QqLoM
Intergovernmental Panel on Climate Change, Summary for Policymakers. Cambridge University Press, 2014, ch. Climate Change 2013 – The Physical Science Basis, pp. 1–30. [Online]. Available: https://doi.org/10.1017/CBO9781107415324.004
S. A. Navarrete Boutaud, Impacto de las infiltraciones de aire en el desempeño energético y térmico de las viviendas. Universidad de Concepción. Chile, 2016. [Online]. Available: https://bit.ly/3QSwxqg
Design Builder. (2022) Design builder software. [Online]. Available: https://bit.ly/3OnQ8gp
Berkeley Lab. (2022) THERM. Windows and Daylighting. [Online]. Available: https: //bit.ly/3HU2iv6
J. Roset Calzada, R. A. Vásquez Paredes, and L. M. Barajas Saldaña, “ús eficient de programes informatics en arquitectura: Designbuilder iDialux,” JIDA’14. II Jornadas sobre Innovación Docente en Arquitectura, 2014. [Online]. Available: https://doi.org/10.5821/jida.2014.5027
INEC. (2011) Vii censo de población y vi de vivienda. Instituto Nacional de Estadíticas y Censos. [Online]. Available: https://bit.ly/3br35Ym
H. Madrid, F. Opazo, and O. Parada, “Impacto de las infiltraciones de aire en el desempeño energético y térmico de las viviendas,” Construciión, 2012. [Online]. Available: https://bit.ly/3yn1Gev
E. Roque and P. Santos, “The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position,” Buildings, vol. 7, no. 1, 2017. [Online]. Available: https://doi.org/10.3390/buildings7010013
The U.S. Department of Housing and Urban Development Office of Policy Development and Research, Steel vs. Wood. Cost Comparison. Beaufort Demonstration Homes. Partnership for Advancing Technology in Housing, 2002. [Online]. Available: https://bit.ly/3ngPhCz