Comparative analysis of thermal comfort of a single-family house in LSF and brick masonry

Main Article Content

Abstract

Residential construction in Ecuador has recently grown by 35.6%. The typical construction system for housing envelopes is concrete block or brick, construction in LSF, Light Steel Framing or galvanized steel frames (LSF,) is emerging. To solve the housing demand, the thermal interior comfort of a two-story single-family home in the city of Cuenca is evaluated with both construction systems to know the comfort standards offered by homes in accordance with the Ecuadorian Construction Standard. (NEC). The research was carried out with Design Builder and Therm where the parameters that influence the energy performance of homes are analyzed. Under local conditions, the predominant system reaches annual hourly thermal comfort values of 51%, but the LSF system reaches 62%. However, with improvement strategies in the overall envelope, the LSF reaches 86%. The variables in order from greater to lesser thermal influence resulted: Air infiltrations, construction system of the envelope and implantation of the house. In Cuenca it is feasible to use the LSF with minimum insulation to reach acceptable levels of comfort, being an adequate alternative to promote to build single-family homes.

Article Details

Section
Materials – Heat Transfer

References

V. Arengo Piragine, J. Cruz Breard, and C. Pilar, “Anteproyecto de viviendas sociales con steel framing en corrientes. comparación con sistema húmedo tradicional,” Arquitecno, no. 15, p. 37, 2020. [Online]. Available: http://dx.doi.org/10.30972/arq.0154386

A. O. Venegas Tomalá, Evaluación de la energía contenida, emisiones de CO2 y material particulado en la fabricación del ladrillo semimecanizado tochano en Cuenca, a través del análisis de ciclo de vida (ACV). Universidad de Cuenca, Ecuador, 2018. [Online]. Available: https://bit.ly/2Soq1IU

M. T. Baquero L. and F. Quesada M., “Eficiencia energética en el sector residencial de la ciudad de Cuenca, Ecuador,” Maskana, vol. 7, no. 2, pp. 147–165, 2016. [Online]. Available: https://doi.org/10.18537/mskn.07.02.11

M. Manzan, E. Zandegiacomo De Zorzi, and W. Lorenzi, “Numerical simulation and sensitivity analysis of a steel framed internal insulation system,” Energy and Buildings, vol. 158, pp. 1703–1710, 2018. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.069

M. Bernardes, S. G. Nilsson, M. S. Martins, and A. Romanini, “Comparativo econômico da aplicação do sistema light steel framing em habitação de interesse social,” Revista de Arquitetura IMED, vol. 1, no. 1, pp. 31–40, 2012. [Online]. Available: https://doi.org/10.18256/2318-1109/arqimed.v1n1p31-40

L. M. Lupan, D. L. Manea, and L. M. Moga, “Improving thermal performance of the wall panels using slotted steel stud framing,” Procedia Technology, vol. 22, pp. 351–357, 2016. [Online]. Available: https://doi.org/10.1016/j.protcy.2016.01.108

INEC. (2017) Encuesta de edificaciones 2017. Instituto Nacional de Estadísticas y Censos del Ecuador. [Online]. Available: https://bit.ly/3NsvnyW

MIDUVI, NEC-11. Vivienda De Hasta 2 Pisos Con Luces De Hasta 4.0 M. Ministerio de Desarrollo Urbano y Vivienda. República del Ecuador., 2011. [Online]. Available: https://bit.ly/3HU0uCk

E. Roque and P. Santos, “The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position,” Buildings, vol. 7, no. 1, 2017. [Online]. Available: https://doi.org/10.3390/buildings7010013

A. M. Sarmanho Freitas and R. C. Moraes de Crasto, Steel Framing: Arquitectura. Instituto Latinoamericano del Fierro y el Acero - ILAFA, 2007. [Online]. Available: https://bit.ly/3QOMYUy

J. L. Lamus Rodríguez, “Análisis de viabilidad económica: sistema constructivo light steel framing en Colombia,” Master’s thesis, Universidad de los Andes. Colombia, 2015. [Online]. Available: https://bit.ly/3HRQfhU

E. Rodrigues, N. Soares, M. S. Fernandes, A. R. Gaspar, Álvaro Gomes, and J. J. Costa, “An integrated energy performance-driven generative design methodology to foster modular lightweight steel framed dwellings in hot climates,” Energy for Sustainable Development, vol. 44, pp. 21–36, 2018. [Online]. Available: https://doi.org/10.1016/j.esd.2018.02.006

B. Schafer, D. Ayhan, J. Leng, P. Liu, D. Padilla-Llano, K. Peterman, M. Stehman, S. Buonopane, M. Eatherton, R. Madsen, B. Manley, C. Moen, N. Nakata, C. Rogers, and C. Yu, “Seismic response and engineering of cold-formed steel framed buildings,” Structures, vol. 8, pp. 197–212, 2016. [Online]. Available: https://doi.org/10.1016/j.istruc.2016.05.009

T. Tafsirojjaman, S. Fawzia, D. Thambiratnam, and X. Zhao, “Seismic strengthening of rigid steel frame with cfrp,” Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 334–347, 2019. [Online]. Available: https://doi.org/10.1016/j.acme.2018.08.007

J. R. da Silva Nogueira, I. J. Apolônio Callejas, and L. Cleonice Durante, “Desempenho de painel de vedação vertical externa em light steel framing composto por placas de madeira mineralizada,” Ambiente Construido, vol. 18, no. 3, 2018. [Online]. Available: https://doi.org/10.1590/s1678-86212018000300282

F. Bolina, R. Christ, A. Metzler, U. Quinino, and B. Tutikian, “Comparison of the fire resistance of two structural wall systems in light steel framing,” DYNA, vol. 84, no. 201, pp. 123–128, abr. 2017. [Online]. Available: https://doi.org/10.15446/dyna.v84n201.57487

E. Yandzio, R. M. Lawson, and A. G. J. Way, Light steel framing in residential construction. SCI. Silwood Par, Ascot, Berkshire, 2015. [Online]. Available: https://bit.ly/3xXZhoV

P. E. Amador Salomão, A. D. Alves Soares, A. L. P. Lorentz, and L. T. Gonçalves de Paula, “Conventional masonry and light steel framing comparative analysis: a case study in unifammary residence in teófilo otoni, mg,” Research, Society and Development, vol. 8, no. 9, p. e14891268, Jun. 2019. [Online]. Available: https://doi.org/10.33448/rsd-v8i9.1268

H. OlivieriIvan, I. C. Alves Barbosa, A. C. Da Rocha, A. Denis Granja, and P. S. Pucharelli Fontanini, “A utilização de novos sistemas construtivos para a redução no uso de insumos nos canteiros de obras: Light steel framing,” Ambiente Construido, vol. 17, no. 4, 2017. [Online]. Available: https://doi.org/10.1590/s1678-86212017000400184

MIDUVI, Acuerdo Ministerial: Reglamento para validación de tipologías y planes masa para proyectos de vivienda de interés social. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2019. [Online]. Available: https://bit.ly/3HSg3ul

——, Eficiencia energética en edificaciones residenciales NEC-HS-EE. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2018. [Online]. Available: https://bit.ly/39U5CtD

——, Eficiencia energética en la construcción en Ecuador. Ministerio de Desarrollo Urbano y vivienda. República del Ecuador, 2011. [Online]. Available: https://bit.ly/39QqLoM

Intergovernmental Panel on Climate Change, Summary for Policymakers. Cambridge University Press, 2014, ch. Climate Change 2013 – The Physical Science Basis, pp. 1–30. [Online]. Available: https://doi.org/10.1017/CBO9781107415324.004

S. A. Navarrete Boutaud, Impacto de las infiltraciones de aire en el desempeño energético y térmico de las viviendas. Universidad de Concepción. Chile, 2016. [Online]. Available: https://bit.ly/3QSwxqg

Design Builder. (2022) Design builder software. [Online]. Available: https://bit.ly/3OnQ8gp

Berkeley Lab. (2022) THERM. Windows and Daylighting. [Online]. Available: https: //bit.ly/3HU2iv6

J. Roset Calzada, R. A. Vásquez Paredes, and L. M. Barajas Saldaña, “ús eficient de programes informatics en arquitectura: Designbuilder iDialux,” JIDA’14. II Jornadas sobre Innovación Docente en Arquitectura, 2014. [Online]. Available: https://doi.org/10.5821/jida.2014.5027

INEC. (2011) Vii censo de población y vi de vivienda. Instituto Nacional de Estadíticas y Censos. [Online]. Available: https://bit.ly/3br35Ym

H. Madrid, F. Opazo, and O. Parada, “Impacto de las infiltraciones de aire en el desempeño energético y térmico de las viviendas,” Construciión, 2012. [Online]. Available: https://bit.ly/3yn1Gev

E. Roque and P. Santos, “The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position,” Buildings, vol. 7, no. 1, 2017. [Online]. Available: https://doi.org/10.3390/buildings7010013

The U.S. Department of Housing and Urban Development Office of Policy Development and Research, Steel vs. Wood. Cost Comparison. Beaufort Demonstration Homes. Partnership for Advancing Technology in Housing, 2002. [Online]. Available: https://bit.ly/3ngPhCz