Study of the Energy Efficiency of an Urban E-Bike Charged with a Standalone Photovoltaic Solar Charging Station and its Compliance with the Ecuadorian Grid Code No. ARCERNNR – 002/20

Main Article Content

Abstract

E-bikes are an emerging sustainable means of transportation, if adopted massively, they can help face the challenges of human mobility in urban centers worldwide. In Cuenca, Ecuador, the local government built cycle routes (13.47 km) connecting strategic points to facilitate and encourage sustainable mobility. However, the effective implementation of the electromobility strategies at a large scale entails impacts on the power grid, like the increase in the energy demand and the possible decrease of the energy quality due to the harmonic distortion that characterizes the battery's charging current. This research aims to obtain a primary input to evaluate such impacts through an energy efficiency study of an urban e-bike charged by a standalone solar photovoltaic charging station implemented in the Microgrid Laboratory of Universidad de Cuenca. The methodology includes the experimental characterization of the battery's charging regime, the vehicle's energy efficiency calculation, and the evaluation of its compliance with Ecuadorian grid code No. ARCERNNR – 002/20. Results show that the battery's charger performs a charging regime standardized by German regulations, delivering 92% of charge in 4.82 hours. The e-bike's calculated average energy efficiency is 2.18 kWh/100 miles or 73.77 m/Wh, and a fuel economy of 1545.1 MPGe. Finally, the magnitude of the first four odd harmonic components and the total harmonic distortion of the charging current exceeds the limits established by the grid code in force.

Article Details

Section
Energy efficiency

References

A. Bull, Congestión de tránsito: el problema y cómo enfrentarlo. Comisión Económica para América Latina y el Caribe (CEPAL), Naciones Unidas, 2003. [Online]. Available: https://bit.ly/3TW587t

I. Thomson and A. Bull, La congestión del tránsito urbano: causas y consecuencias económicas y sociales. Comisión Económica para América Latina y el Caribe (CEPAL), División de Recursos Naturales e Infraestructura, Unidad de Transporte, Naciones Unidas, 2001. [Online]. Available: https://bit.ly/3TW587t

P. Felipe-Falgas, C. Madrid-Lopez, and O. Marquet, “Assessing environmental performance of micromobility using lca and self-reported modal change: The case of shared e-bikes, e-scooters, and e-mopeds in barcelona,” Sustainability, vol. 14, no. 7, p. 4139, 2022. [Online]. Available: https://doi.org/10.3390/SU14074139

M. Elhenawy, H. A. Rakha, Y. Bichiou, M. Masoud, S. Glaser, J. Pinnow, and A. Stohy, “A feasible solution for rebalancing large-scale bike sharing systems,” Sustainability, vol. 13, no. 23, p. 13433, 2021. [Online]. Available: https://doi.org/10.3390/su132313433

IEA, Global EV Outlook 2020. IEA. Paris, 2020. [Online]. Available: https://bit.ly/3gne4EW

M. M. Sokolowski, “Laws and policies on electric scooters in the european union: A ride to the micromobility directive?” European Energy and Environmental Law Review, vol. 29, pp. 127–140, 2020, place: Alphen aan den Rijn, The Netherlands Publisher: Kluwer Law International. [Online]. Available: https://doi.org/10.54648/EELR2020036

K. Turon and P. Czech, “The concept of rules and recommendations for riding shared and private e-scooters in the road network in the light of global problems,” in Modern Traffic Engineering in the System Approach to the Development of Traffic Networks, E. Macioszek and G. Sierpinski, Eds. Springer International Publishing, 2020, pp. 275–284. [Online]. Available: https://doi.org/10.1007/978-3-030-34069-8_21

A. Li, P. Zhao, X. Liu, A. Mansourian, K. W. Axhausen, and X. Qu, “Comprehensive comparison of e-scooter sharing mobility: Evidence from 30 european cities,” 2022, vol. 105, p. 103229, Transportation Research Part D: Transport and Environment. [Online]. Available: https://doi.org/10.1016/j.trd.2022.103229

K. Wang, X. Qian, D. T. Fitch, Y. Lee, J. Malik, and G. Circella, “What travel modes do shared e-scooters displace? a review of recent research findings,” Transport Reviews, pp. 1–27, 2022. [Online]. Available: https://doi.org/10.1080/01441647.2021.2015639

E. Ayyildiz, “A novel pythagorean fuzzy multi-criteria decision-making methodology for e-scooter charging station location-selection,” Transportation Research Part D: Transport and Environment, vol. 111, p. 103459, 2022. [Online]. Available: https://doi.org/10.1016/j.trd.2022.103459

M.-D. Lin, P.-Y. Liu, J.-H. Kuo, and Y.-H. Lin, “A multiobjective stochastic location-allocation model for scooter battery swapping stations,” Sustainable Energy Technologies and Assessments, vol. 52, p. 102079, 2022. [Online]. Available: https://doi.org/10.1016/j.seta.2022.102079

Y.-W. Chen, C.-Y. Cheng, S.-F. Li, and C.-H. Yu, “Location optimization for multiple types of charging stations for electric scooters,” Applied Soft Computing, vol. 67, pp. 519–528, 2018. [Online]. Available: https://doi.org/10.1016/j.asoc.2018.02.038

J. G. Schmidt, F. J. De Faveri, J. C. De Bona, E. A. Rosa, L. S. Dos Santos, C. Q. Pica, L. B. R. Morinico, and I. França, “Forecasts and impact on the electrical grid with the expansion of electric vehicles in northeast of brazil,” in 2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2022, pp. 1–5. [Online]. Available: https://doi.org/10.1109/TD43745.2022.9816978

L. Di Chiara, F. Ferres, and F. Bastarrica, “Impact of electromobility deployment scenarios in the power system of uruguay by 2028,” in 2021 IEEE URUCON, 2021, pp. 360–363. [Online]. Available: https://doi.org/10.1109/URUCON53396.2021.9647426

D. P. Jaramillo, M. C. Gutiérrez, and R. Mix, Electromovilidad: Panorama actual en América Latina y el Caribe: Versión infográfica. Banco Interamericano de Desarrollo, 2019. [Online]. Available: http://dx.doi.org/10.18235/0001654

Primicias. (2020) Las ventas de vehículos híbridos y eléctricos crecen casi 300 %. [Online]. Available: https://bit.ly/3EM9mZR

J. Figura and T. Gadek-Hawlena, “The Impact of the COVID-19 Pandemic on the Development of Electromobility in Poland. The Perspective of Companies in the Transport-Shipping-Logistics Sector: A Case Study,” Energies, vol. 15, no. 4, pp. 1–18, 2022. [Online]. Available: https://bit.ly/3XkWfaj

T. Rokicki, P. Bórawski, A. Beldycka-Bórawska, A. Zak, and G. Koszela, “Development of electromobility in european union countries under covid-19 conditions,” Energies, vol. 15, no. 1, 2022. [Online]. Available: https://doi.org/10.3390/en15010009

GAD Cuenca. (2022) Plan de movilidad. [Online]. Available: https://bit.ly/3EPQlqh

P. Ochoa, Ciclovía de los Ríos de Cuenca. GAD Municipal de Cuenca, 2018. [Online]. Available: https://bit.ly/3ETFQCw

C. A. Cruz Leal and M. Virviescas Arias, “Evaluación de la operación del tranvía de Cuenca Ecuador y del tranvía de Medellín Colombia,” 2018.

Redacción El Mercurio. (2021) Nueva electrolinera en Cuenca. [Online]. Available: https://bit.ly/3vnx7CY

J. L. Espinoza, L. G. González, and R. Sempértegui, “Micro grid laboratory as a tool for research on non-conventional energy sources in ecuador,” in 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, pp. 1–7. [Online]. Available: https://doi.org/10.1109/ROPEC.2017.8261615

J. M. Rey, G. A. Vera, P. Acevedo-Rueda, J. Solano, M. A. Mantilla, J. Llanos, and D. Sáez, “A review of microgrids in latin america: Laboratories and test systems,” IEEE Latin America Transactions, vol. 20, no. 6, pp. 1000–1011, 2022. [Online]. Available: https://doi.org/10.1109/TLA.2022.9757743

AMPERE ENERGY, AMPERE square PRO Manual del instalador. AMPERE POWER ENERGY S.L., 2021. [Online]. Available: https://bit.ly/3ABgxm4

ARCERNNR, Calidad del servicio de distribución y comercialización de energía eléctrica. Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables, 2020. [Online]. Available: https://bit.ly/3tRydGr

DIN, DIN 41772 Static power convertors; semiconductor rectifier equipment, shapes and letter symbols of characteristic curves. German Institute for Standardisation (Deutsches Institut für Normung), 1979. [Online]. Available: https://bit.ly/3GCFD8b

——, DIN 41772 Supplement 1 Static power convertors; semiconductor rectifier equipment, examples of characteristic curves for battery chargers. German Institute for Standardisation (Deutsches Institut für Normung). [Online]. Available: https://bit.ly/3GCJTEp

——, DIN 41773-1 Static power convertors; semiconductor rectifier equipment with IUcharacteristics for charging of lead-acid batteries, guidelines. German Institute for Standardisation (Deutsches Institut für Normung). [Online]. Available: https://bit.ly/3hSi28X

T. McCarran and N. Carpenter, “Electric bikes: Survey and energy efficiency analysis,” Efficiency Vermont, 2018. [Online]. Available: https://bit.ly/3ACmgYP

Department of Energy. (2022) Fueleconomy. gov Top Ten. [Online]. Available: https: //bit.ly/3VdjKjy