Characterization of the RSU thermal potential, for the generation of Electric Energy, using Hydrothermal carbonization

Main Article Content

Abstract

The zenith of oil and the greenhouse effect are the main reasons why it is necessary to use nonconventional renewable energy (NCRE) sources. Solid urban waste is one of these sources, and the main objective of this research is to determine its main features, including calorific value, as well as the use of modern hydrothermal carbonization (HTC) and hydrothermal liquefaction (HTL) procedures for the generation of energy and electrical power. For this purpose, it was used the sampling data of urban solid waste from the metropolitan Chiclayo area. A calorimetric bomb was employed for measuring its calorific value and the electrical generation potential was simulated. In addition, the main objective was fulfilled, and it was also possible to steadily generate energy and power. This will help to avoid greenhouse gas emissions, and thus contribute to meet the commitments signed by Peru to reduce greenhouse gases, and follow the path to a new sustainable energy matrix, while simultaneously providing a potential solution to the problem of managing solid urban waste, which is the main environmental problem of the city of Chiclayo Peru.

Article Details

Section
Energy efficiency

References

G. Garrote, H. Domínguez, and J. C. Parajó, “Hydrothermal processing of lignocellulosic materials,” Holz als Roh- und Werkstoff, vol. 57, no. 3, pp. 191–202, 1999. [Online]. Available: https://doi.org/10.1007/s001070050039

BBC. (2018) Los 10 países que más y menos basura generan en América Latina (y cómo se sitúan a nivel mundial). [Online]. Available: https://bbc.in/2NyglZo

M. J. Antal and M. Gronli, “The art, science, and technology of charcoal production,” Industrial & Engineering Chemistry Research, vol. 42, no. 8, pp. 1619–1640, 2003. [Online]. Available: https://doi.org/10.1021/ie0207919

Y. Pastor Férez, M. M. Martinez Segado, and R. Valdez Illán, Construcción de una planta de producción de biochar. Departamento de Ingeniería de Alimentos y del Equipamiento Agrícola, Área de Ingeniería Agroforestal. Universidad Politécnica de Cartagena, 2019.

WBA, Global Bioenergy Statistics 2019. World Bioenergy Association, 2019. [Online]. Available: https://bit.ly/3VnXILC

F. Bedussi, “Valutazione delle potenzialitá del biochar come componente dei substrati di coltivazione,” Ph.D. dissertation, 2015. [Online]. Available: https://bit.ly/3irUnwk

D. Mohan, C. U. J. Pittman, and P. H. Steele, “Pyrolysis of wood/biomass for bio oil: A critical review,” Energy & Fuels, vol. 20, no. 3, pp. 848–889, 2006. [Online]. Available: https://doi.org/10.1021/ef0502397

A. Brown, Bioenergy roadmap 2017. Agencia Internacional de la Energía, 2018. [Online]. Available: https://bit.ly/3FePrUu

M. C. Cueva Díaz, J. L. Rosaldo Santiago, and J. López Luna, “Evaluación de la toxicidad de los suelos mediante bioensayos con semillas,” INECC, pp. 87–105, 2018. [Online]. Available: https://bit.ly/3gLD9K7

Y. Matsumura, “Chapter 9 - hydrothermal gasification of biomass,” in Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier, pp. 251–267. [Online]. Available: https://doi.org/10.1016/B978-0-444-63289-0.00009-0

L. Yang, C. Lu, Y. Gao, Y. Lin, J. Xu, H. Xu, X. Zhang, M. Wang, Y. Zhao, C. Yu, and Y. Si, “Hydrogen-rich gas production from the gasification of biomass and hydrothermal carbonization (HTC) aqueous phase.” [Online]. Available: https://doi.org/10.1007/s13399-020-01197-9

E. P. Stambaugh, “Hydrothermal processing – an emerging technology,” Materials & Design, vol. 10, no. 4, pp. 175–185, 1989. [Online]. Available: https://doi.org/10.1016/S0261-3069(89)80003-2

D. Shoemaker, Bomba calorimétrica de mediciones. Wiley, 1996.

J. Rodríguez, Caracterización de los residuos sólidos de la ciudad de Chiclayo. Limusa, 2010.

N. Baccile, M. Antonietti, and M.-M. Titirici, “One-step hydrothermal synthesis of nitrogen doped nanocarbons: Albumine directing the carbonization of glucose,” ChemSusChem, vol. 3, no. 2, pp. 246–253, 2010. [Online]. Available: https://doi.org/10.1002/cssc.200900124

T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 223–247, 2018. [Online]. Available: https://doi.org/10.1016/j.rser.2018.03.071

C. W. Garland, J. W. Nibler, and D. P. Shoemaker, Experiments in Physical Chemistry. McGraw-Hill Higher Education, 2016. [Online]. Available: https://bit.ly/3irVOen

C. Peng, Y. Zhai, Y. Zhu, B. Xu, T. Wang, C. Li, and G. Zeng, “Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics,” Fuel, vol. 176, pp. 110–118, 2016. [Online]. Available: https://doi.org/10.1016/j.fuel.2016.02.068

R. Conti, “Sintesi e caratterizzazione di carboni ottenuti dalla pirolisis di biomasse,” 2012. [Online]. Available: https://bit.ly/3GWKJMD

J. V. dos Santos, L. G. Fregolente, M. J. Laranja, A. B. Moreira, O. P. Ferreira, and M. C. Bisinoti, “Hydrothermal carbonization of sugarcane industry by-products and process water reuse: structural, morphological, and fuel properties of hydrochars,” Biomass Conversion and Biorefinery, vol. 12, no. 1, pp. 153–161, 2022. [Online]. Available: https://doi.org/10.1007/s13399-021-01476-z

S. Mazumder, P. Saha, K. McGaughy, A. Saba, and M. T. Reza, “Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste,” Biomass Conversion and Biorefinery, vol. 12, no. 1, pp. 39–49, 2022. [Online]. Available: https://doi.org/10.1007/s13399-020-00817-8

Z. Liu and R. Balasubramanian, “Hydrothermal carbonization of waste biomass for energy generation,” Procedia Environmental Sciences, vol. 16, pp. 159–166, 2012. [Online]. Available: https://doi.org/10.1016/j.proenv.2012.10.022

E. Trujillo, C. E. Valencia A., M. C. Alegría-A, Alejandrina, and M. F. Césare-C., “Producción y caracterización química de biochar a partir de residuos orgánicos avícolas,” Revista de la Sociedad Química del Perú, vol. 85, pp. 489–504, 2019. [Online]. Available: http://dx.doi.org/10.37761/rsqp.v85i4.262