Determinación de los formatos óptimos para la compresión de imágenes digitales

Contenido principal del artículo

Abimael Adam Francisco Paredes
Heidy Velsy Rivera Vidal De Sánchez
Inés Eusebia Jesús Tolentino
Jimmy Grover Flores Vida

Resumen

El objetivo de este trabajo fue el determinar la influencia de diferentes formatos de imagen y herramientas que se utilizan para la compresión en el tamaño final de las mismas, para conocer cuáles son los formatos óptimos para la compresión. La muestra estuvo conformada por cinco archivos de imágenes digitales con extensión .bmp, tomadas en diferentes escenarios y horas a criterio del investigador. La técnica empleada fue el análisis de archivos de imágenes digitales y como instrumento una matriz de doble entrada, donde se registraron las conversiones de los archivos .bmp a seis diferentes extensiones de archivos de imágenes, con cuatro diferentes herramientas de manipulación de archivos de imágenes. El diseño experimental fue factorial, donde los dos factores fueron los formatos y las herramientas de compresión de imágenes y la variable dependiente, el tamaño final del archivo de imagen. Se aplicó análisis estadístico ANOVA factorial con a = 0,05. Se obtuvo que el formato de menor tamaño fue el .jpg al utilizar como herramienta el Illustrator y el de mayor tamaño el .psd, también obtenido con el Illustrator. El análisis estadístico mostró que el factor formato influye de forma significativa en el tamaño final de las imágenes (p < 0,05) y el factor herramienta no muestra influencia significativa en el tamaño de las imágenes (p > 0,05), como tampoco es significativa la interacción entre los factores. Se concluye que independientemente de la herramienta que se utilice, es el formato de la imagen lo que influye en el tamaño final.

Detalles del artículo

Sección
Artículo Científico

Referencias

N. La Serna, L. Pro Concepción, and C. Yañez Durán, “Compresión de imágenes: Fundamentos, técnicas y formatos,” Revista de Ingeniería de Sistemas e Informática, vol. 6, no. 1, pp. 21–29, 2009. [Online]. Available: https://upsalesiana.ec/ing32ar1r01

C. A. Ordoñez Santiago, “Formatos de imagen digital,” Revista Digital Universitaria, vol. 5, no. 7, 2005. [Online]. Available: https://upsalesiana.ec/ing32ar1r02

M. Al-khassaweneh and O. AlShorman, “Freichen bases based lossy digital image compression technique,” Applied Computing and Informatics, vol. 20, no. 1/2, pp. 105–118, 2024. [Online]. Available: https://doi.org/10.1016/j.aci.2019.12.004

AlShorman, O. M. Mahmoud, AlKhassaweneh, and Mahmood, “Lossy digital image compression technique using run-length encoding and frei-chen basis,” in Universidad de Yarmouk, 2012. [Online]. Available: https://upsalesiana.ec/ing32ar1r4

P. Chamorro-Posada, “A simple method for estimating the fractal dimension from digital images: The compression dimension,” Chaos, Solitons & Fractals, vol. 91, pp. 562–572, 2016. [Online]. Available: https://doi.org/10.1016/j.chaos.2016.08.002

L. Arranz, Vector images and bitmaps. Recursostic, 2005. [Online]. Available: https://upsalesiana.ec/ing32ar1r6

M. E. Ruiz Rivera and E. Yarasca Carranza, Juan Eduardo Ruiz Lizama, “Análisis de la compresión de imágenes utilizando clustering bajo el enfoque de colonia de hormigas,” Industrial Data, vol. 16, no. 2, pp. 118–131, 2013. [Online]. Available: https://doi.org/10.15381/idata.v16i2.11929

D. V. Rojatkar, N. D. Borkar, B. R. Naik, and R. N. Peddiwar, “Image compression techniques: Lossy and lossless,” in International Journal of Engineering Research and General Science, vol. 3, no. 2, 2015, pp. 912–917. [Online]. Available: https://upsalesiana.ec/ing32ar1r66

S. M. Hardi, B. Angga, M. S. Lydia, I. Jaya, and J. T. Tarigan, “Comparative analysis runlength encoding algorithm and fibonacci code algorithm on image compression,” Journal of Physics: Conference Series, vol. 1235, no. 1, p. 012107, jun 2019. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1235/1/012107

G. E. Blelloch, Introduction to Data Compression. Computer Science Department. Carnegie Mellon University, 2013. [Online]. Available: https://upsalesiana.ec/ing32ar1r10

R. C. González and R. E. Woods, Tratamiento digital de imágenes. Madrid: Díaz de Santos„ 1996. [Online]. Available: https://upsalesiana.ec/ing32ar1r11

A. AbuBaker, M. Eshtay, and M. AkhoZahia, “Comparison study of different lossy compression techniques applied on digital mammogram images,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 12, pp. 149–155, 2016. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2016.071220

C. Ding, Y. Chen, Z. Liu, and T. Liu, “Implementation of grey image compression algorithm based on variation partial differential equation,” Alexandria Engineering Journal, vol. 59, no. 4, pp. 2705–2712, 2020, new trends of numerical and analytical methods for engineering problems. [Online]. Available: https://doi.org/10.1016/j.aej.2020.05.012

X. P. Alaitz Zabala, R. Díaz-Delgado, F. García, F. Auli-Llinas, and J. Serra-Sagrista, “Effects of jpeg and jpeg2000 lossy compression on remote sensing image classification for mapping crops and forest areas,” e Ministry of Science and Technology and the FEDER, 2020. [Online]. Available: https://upsalesiana.ec/ing32ar1r14

M. C. Stamm and K. J. R. Liu, “Anti-forensics of digital image compression,” IEEE Transactions on Information Forensics and Security, vol. 6, no. 3, pp. 1050–1065, 2011. [Online]. Available: http://doi.org/10.1109/TIFS.2011.2119314

T. H. Thai, R. Cogranne, F. Retraint, and T.-N.-C. Doan, “Jpeg quantization step estimation and its applications to digital image forensics,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 1, pp. 123–133, 2017. [Online]. Available: http://doi.org/10.1109/TIFS.2016.2604208

L. González, J. Muro, M. del Fresno, and R. Barbuzza, Un enfoque para la compresión de imágenes médicas basado enregiones de interés y compensación de movimiento. 4to Congreso Argentino de Informatica y Salud, CAIS 2013, 2013. [Online]. Available: https://upsalesiana.ec/ing32ar1r17

F. Liu, M. Hernandez-Cabronero, V. Sanchez, M. W. Marcellin, and A. Bilgin, “The current role of image compression standards in medical imaging,” Information, vol. 8, no. 4, 2017. [Online]. Available: https://doi.org/10.3390/info8040131

M. A. Ameer Kadhum, “Compression the medical images using length coding method,” Journal of Electrical and Electronics Engineering, vol. 12, no. 3, pp. 94–98, 2017. [Online]. Available: http://doi.org/10.9790/1676-1203029498

Adobe. (2023) Elección de un formato de archivo. Adobe. All rights reserved. [Online]. Available: https://upsalesiana.ec/ing32ar1r26

C. K. Parmar and K. Pancholi, “A review on image compression techniques,” Journal of Information, Knowledge and Research in Electrical Engineering, vol. 2, no. 2, pp. 281–284, 2013. [Online]. Available: https://upsalesiana.ec/ing32ar1r20

D. Salomon, G. Motta, and D. Bryant, Compresión de datos. La referencia completa. Springer-Verlag London Limited, 2007. [Online]. Available: https://upsalesiana.ec/ing32ar1r21

W. Wahba and A. Maghari, “Lossless image compression techniques comparative study,” International Research Journal of Engineering and Technology (IRJET), vol. 3, 02 2016. [Online]. Available: https://upsalesiana.ec/ing32ar1r22

S. Dhawan, “A review of image compression and comparison of its algorithms,” International Journal of Electronics & Communication Technology, vol. 2, no. 1, pp. 22–26, 2011. [Online]. Available: https://upsalesiana.ec/ing32ar1r23

K. Sakshica and K. Gupta, “Various raster and vector image file formats,” International Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 3, pp. 268–271, 2015. [Online]. Available: http://doi.org/10.17148/IJARCCE.2015.4364

A. K. Al-Janabi, “Efficient and simple scalable image compression algorithms,” Ain Shams Engineering Journal, vol. 10, no. 3, pp. 463–470, 2019. [Online]. Available: https://doi.org/10.1016/j.asej.2019.01.008

V. Barannik, S. Sidchenko, N. Barannik, and V. Barannik, “Development of the method for encoding service data in cryptocompression image representation systems,” Eastern-European Journal of Enterprise Technologies, vol. 3, no. 9, pp. 103–115, 2021. [Online]. Available: https://doi.org/10.15587/1729-4061.2021.235521

P. K. Pareek, C. Sridhar, R. Kalidoss, M. Aslam, M. Maheshwari, P. K. Shukla, and S. J. Nuagah, “Intopmicm: Intelligent medical image size reduction model,” Journal of Healthcare Engineering, vol. 2022, no. 1, p. 5171016, 2022. [Online]. Available: https://doi.org/10.1155/2022/5171016

X. Gao, J. Mou, S. Banerjee, and Y. Zhang, “Color-gray multi-image hybrid compression–encryption scheme based on bp neural network and knight tour,” IEEE Transactions on Cybernetics, vol. 53, no. 8, pp. 5037–5047, 2023. [Online]. Available: https://doi.org/10.1109/TCYB.2023.3267785

R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar, “High-fidelity audio compression with improved rvqgan,” Advances in Neural Information Processing Systems, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.06546