Liquid level tracking for a coupled tank system using quasi–lpv control

Main Article Content

Pedro Teppa-Garran
Diego Muñoz-de Escalona
Javier Zambrano

Abstract

This article proposes a gain-scheduling procedure based on quasi-LPV modeling for a nonlinear coupled tank system to track the liquid level with zero steady-state error. The nonlinearities are directly represented by a parameter vector that varies within a bounded set constrained by the physical limits of the tank system levels. This approach enables accurate nonlinear system modeling using a linear parameter-varying model. State-feedback linear controllers are designed at the extreme vertices of the bounded set. The global controller is derived as the weighted average of local controller contributions, with the weighting determined by the instantaneous values of the parameter vector. Two interpolation mechanisms are proposed to implement this weighted averaging of the linear controllers. The results confirm the effectiveness of the proposed method in achieving accurate liquid level tracking.

Article Details

Section
Scientific Paper

References

R. Grygiel, R. Bieda, and M. Blachuta, “On significance of second-order dynamics for coupled tanks systems,” in 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016, pp. 1016–1021. [Online]. Available: https://doi.org/10.1109/MMAR.2016.7575277

S. K. Singh, N. Katal, and S. G. Modani, “Multi-objective optimization of pid controller for coupled-tank liquid-level control system using genetic algorithm,” in Proceedings of the Second International Conference on Soft Computing for Problem Solving (SocProS 2012), December 28-30, 2012, B. V. Babu, A. Nagar, K. Deep, M. Pant, J. C. Bansal, K. Ray, and U. Gupta, Eds. New Delhi: Springer India, 2014, pp. 59–66. [Online]. Available: https://doi.org/10.1007/978-81-322-1602-5_7

D. L. Mute, S. R. Mahapatro, and K. K. Chaudhari, “Internal model based pi controller design for the coupled tank system: An experimental study,” in 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), 2016, pp. 72–76. [Online]. Available: https://doi.org/10.1109/CMI.2016.7413713

M. G. Stohy, H. S. Abbas, A.-H. M. El-Sayed, and A. G. Abo El-maged, “Parameter estimation and pi control for a water coupled tank system,” Journal of Advanced Engineering Trends, vol. 38, no. 2, pp. 147–159, 2020. [Online]. Available: https://doi.org/10.21608/jaet.2020.73062

L. Liang, “The application of fuzzy pid controller in coupled-tank liquid-level control system,” in 2011 International Conference on Electronics, Communications and Control (ICECC), 2011, pp. 2894–2897. [Online]. Available: https://doi.org/10.1109/ICECC.2011.6067785

A. Basci and A. Derdiyok, “Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system,” Measurement, vol. 91, pp. 12–18, 2016. [Online]. Available: https://doi.org/10.1016/j.measurement.2016.05.026

M. Essahafi, “Model predictive control (MPC) applied to coupled tank liquid level system,” CoRR, vol. abs/1404.1498, 2014. [Online]. Available: https://doi.org/10.48550/arXiv.1404.1498

J. Berberich, J. Köhler, M. A. Müller, and F. Allgower, “Data-driven model predictive control: closed-loop guarantees and experimental results,” at - Automatisierungstechnik, vol. 69, no. 7, pp. 608–618, Jun. 2021. [Online]. Available: http://dx.doi.org/10.1515/auto-2021-0024

J. Jiffy Anna, N. E. Jaffar, and F. Riya Mary, “Modelling and control of coupled tank liquid level system using backstepping method,” International Journal of Engineering Research and Technology, vol. 4, no. 6, pp. 667–671, 2015. [Online]. Available: http://dx.doi.org/10.17577/IJERTV4IS060710

J. Dai, B. Ren, and Q.-C. Zhong, “Uncertainty and disturbance estimator-based backstepping control for nonlinear systems with mismatched uncertainties and disturbances,” Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 12, Jul 2018, 121005. [Online]. Available: https://doi.org/10.1115/1.4040590

F. Abu Khadra and J. Abu Qudeiri, “Second order sliding mode control of the coupled tanks system,” Mathematical Problems in Engineering, vol. 2015, no. 1, p. 167852, 2015. [Online]. Available: https://doi.org/10.1155/2015/167852

K. K. Ayten and A. Dumlu, “Implementation of a pid type sliding-mode controller design based on fractional order calculus for industrial process no. 6, pp. 4–10, Dec. 2021. [Online]. Available: https://doi.org/10.5755/j02.eie.30306

M. Vashishth, L. S. Rai, and A. V. R. Kumar, “Liquid level control of coupled tank system using fractional pid controller,” 2013. [Online]. Available: https://upsalesiana.ec/ing33ar2r13

P. Roy and B. Krishna Roy, “Fractional order pi control applied to level control in coupled two tank mimo system with experimental validation,” Control Engineering Practice, vol. 48, pp. 119–135, 2016. [Online]. Available: https://doi.org/10.1016/j.conengprac.2016.01.002

M. H. Jali, A. Ibrahim, R. Ghazali, C. C. Soon, and A. R. Muhammad, “Robust Control Approach of SISO Coupled Tank System,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 1, 2021. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2021.0120123

P. Teppa, M. Bravo, and G. Garcia, “Control por rechazo activo de perturbaciones del nivel de líquido de un sistema de tanques acoplado,” Revista Faraute de Ciencia y Tecnología, vol. 7, no. 1, pp. 10–18, 2012. [Online]. Available: https://upsalesiana.ec/ing33ar2r16

P. Teppa Garran and G. Garcia, “Design of an optimal pid controller for a coupled tanks system employing adrc,” IEEE Latin America Transactions, vol. 15, no. 2, pp. 189–196, 2017. [Online]. Available: https://doi.org/10.1109/TLA.2017.7854611

P. Teppa Garran, M. Faggioni, and G. Garcia, “Optimal tracking in two-degree-of-freedom control systems: Coupled tank system,” Journal of Applied Research and Technology, vol. 21, no. 4, pp. 560–570, 2023. [Online]. Available: https://doi.org/10.22201/icat.24486736e.2023.21.4.2000

W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Automatica, vol. 36, no. 10, pp. 1401–1425, 2000. [Online]. Available: https://doi.org/10.1016/S0005-1098(00)00058-3

D. Rotondo, Advances in Gain-Scheduling and Fault Tolerant Control Techniques. Springer Cham, 2018. [Online]. Available: https://doi.org/10.1007/978-3-319-62902-5

G. S. X. Bombois, D. Ghosh and J. Huillery, “Lpv system identification for control using the local approach,” International Journal of Control, vol. 94, no. 2, pp. 390–410, 2021. [Online]. Available: https://doi.org/10.1080/00207179.2019.1596316

Z. GAO and J. FU, “Robust lpv modeling and control of aircraft flying through wind disturbance,” Chinese Journal of Aeronautics, vol. 32,

no. 7, pp. 1588–1602, 2019. [Online]. Available: https://doi.org/10.1016/j.cja.2019.03.029

S. Li, A.-T. Nguyen, T.-M. Guerra, and A. Kruszewski, “Reduced-order model based dynamic tracking for soft manipulators: Data-driven lpv modeling, control design and experimental results,” Control Engineering Practice, vol. 138, p. 105618, 2023. [Online]. Available: https://doi.org/10.1016/j.conengprac.2023.105618

R. Robles, A. Sala, and M. Bernal, “Performanceoriented quasi-lpv modeling of nonlinear systems,” International Journal of Robust and Nonlinear Control, vol. 29, no. 5, pp. 1230–1248, 2019. [Online]. Available: https://doi.org/10.1002/rnc.4444

P. Persson and K. Astrom, “Dominant pole design - a unified view of pid controller tuning,” IFAC Proceedings Volumes, vol. 25, no. 14, pp. 377–382, 1992. [Online]. Available: https://doi.org/10.1016/S1474-6670(17)50763-6

A. D. Mammadov, E. Dincel, and M. T. Söylemez, “Analytical design of discrete pi–pr controllers via dominant pole assignment,” ISA Transactions, vol. 123, pp. 312–322, 2022. [Online]. Available: https://doi.org/10.1016/j.isatra.2021.05.038

P. Teppa-Garrán and J. Andrade-Da Silva, “An analytical interpolation approach for gain scheduling control of linear parameter varying systems,” Ciencia e Ingeniería, vol. 30, no. 1, pp. 93–101, 2008. [Online]. Available: https://upsalesiana.ec/ing33ar2r27

W. Tan, A. Packard, and G. Balas, “Quasi-lpv modeling and lpv control of a generic missile,” in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), vol. 5, 2000, pp. 3692–3696. [Online]. Available: https://doi.org/10.1109/ACC.2000.879259

G. Vinco, S. Theodoulis, O. Sename, and G. Strub, “Quasi-lpv modeling of guided projectile pitch dynamics through state transformation technique,” IFAC-PapersOnLine, vol. 55, no. 35, pp. 43–48, 2022, 5th IFAC Workshop on Linear Parameter Varying Systems LPVS 2022. [Online]. Available: https://doi.org/10.1016/j.ifacol.2022.11.288

Z. He and L. Zhao, “Quadrotor trajectory tracking based on quasi-lpv system and internal model control,” Mathematical Problems in Engineering, vol. 2015, no. 1, p. 857291, 2015. [Online]. Available: https://doi.org/10.1155/2015/857291

P. S. Cisneros, A. Sridharan, and H. Werner, “Constrained predictive control of a robotic manipulator using quasi-lpv representations,” IFAC-PapersOnLine, vol. 51, no. 26, pp. 118–123, 2018, 2nd IFAC Workshop on Linear Parameter Varying Systems LPVS 2018. [Online]. Available: https://doi.org/10.1016/j.ifacol.2018.11.158

H. Xie, L. Dai, Y. Lu, and Y. Xia, “Disturbance rejection mpc framework for inputaffine nonlinear systems,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6595–6610, 2022. [Online]. Available: https://doi.org/10.1109/TAC.2021.3133376

J. Stefanovski, “Feedback affinization of nonlinear control systems,” Systems & Control Letters, vol. 46, no. 3, pp. 207–217, 2002. [Online]. Available: https://doi.org/10.1016/S0167-6911(02)00136-6

J. Apkarian, Coupled water tank experiments manual. Quanser Consulting Advanced Teaching Systems, 1999. [Online]. Available: https://upsalesiana.ec/ing33ar2r34

R. C. Dorf and R. H. Bishop, Modern Control Systems. Prentice Hall, 2008. [Online]. Available: https://upsalesiana.ec/ing33ar2r35

A. Bartlett, C. Hollot, and H. Lin, “Root locations of an entire polytope of polynomials: It suffices to check the edges,” in 1987 American Control Conference, 1987, pp. 1611–1616. [Online]. Available: https://doi.org/10.23919/ACC.1987.4789571