Fischer tropsch. / use of multicriteria decision making methods for biomass selection in fischer tropsch reactors.

Main Article Content

Abstract

Proper choice of a fuel is an important task to fulfill the requirements for a bioreactor. The number of biomass fuel with different properties available to provide to a bioreactor is vast. However, application of efficiency and systematic mathematical approaches may achieve the evaluation. Multi-criteria decision making methods (MCDM) considers characteristic properties and qualitative criteria to assign importance to each alternative in order to select the best option. This research use MCDM for the selection of the fuel for a Fischer Tropsch reactor.The MCMD methods implemented are complex proportional assessment of alternatives with gray relations (COPRAS-G), operational competitiveness rating analysis (OCRA), a new additive ratio assessment (ARAS), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and SMART methods. The criteria weighting was performed by compromised weighting method composed of AHP (analytic hierarchy process) and Entropy methods. The results illustrated white grain appear has the best choice for a biomass fuel for the five MCMD.

Article Details

Section
Scientific Paper
Author Biography

Javier Martínez Gómez

Investigador Prometeo INER

References

1. Kumar Mittal V., Singh Sangwan K. 2015. Ranking of Drivers for Green Manufacturing Implementation Using Fuzzy Technique for Order of Preference by Similarity to Ideal Solution Method. Journal of Multi-Criteria Decision Analysis. Volume 22, Issue 1-2, pages 119–130. DOI: 10.1002/mcda.1527
2. Ozbey O, Karwan M. H. 2014. An Interactive Approach for Multicriteria Decision Making Using a Tchebycheff Utility Function Approximation Journal of Multi-Criteria Decision Analysis Volume 21, Issue 3-4, pages 153–172. DOI: 10.1002/mcda.1499.
3. Ribas J. R., da Silva Rocha M. 2015. A Decision Support System for Prioritizing Investments in an Energy Efficiency Program in Favelas in the City of Rio de Janeiro. Journal of Multi-Criteria Decision Analysis Volume 22, Issue 1-2, pages 89–99. DOI: 10.1002/mcda.1524
4. Baležentis T., Baležentis A. 2014. A Survey on Development and Applications of the Multi-criteria Decision Making Method MULTIMOORA. Journal of Multi-Criteria Decision Analysis Volume 21, Issue 3-4, pages 209–222,
5. Oral M., Kettani O., 2015. Conceptualizing a Research Paradigm for Multi-Objective Modelling in Supply Chain Management. Journal of Multi-Criteria Decision Analysis Volume 23, Issue 5-6. DOI: 10.1002/mcda.1543
6. Hayashida T., et al. 2012. Multi-Criteria Evaluation for Collaborative Circulating Farming with Collective Operations Between Arable and Cattle Farmers. Journal of Multi-Criteria Decision Analysis. Volume 19, Issue 5-6, pages 227–245. DOI: 10.1002/mcda.1473
7. Jahan A., Ismail M. Y., Mustapha F., Sapuan S. M., 2010 Material selection based on ordinal data, Mater. Des., vol. 31, no. 7, pp. 3180–3187.
8. Martínez J., Villacís S. P., Orozco M. A., Vaca D. E. 2015. Corrosion analysis in different materials for induction cookware. Conference Paper · X CONGRESO DE CIENCIA Y TECNOLOGÍA. 2015 vol. 1, pp. 155-159.
9. Martínez J.,. Riofrio A. J., Villacis S. P., Kastillo J. P. 2015. Heat transfer analysis in different cookware materials. Conference Paper · X CONGRESO DE CIENCIA Y TECNOLOGÍA. vol. 1, pp. 170-175.
10. Villacís S., Martínez J., Riofrío A. J., Carrión D. F., Orozco M. A., Vaca D. 2015. Energy efficiency analysis of different materials for cookware commonly used in induction cookers. Energy Procedia vol. 75, pp. 925-930.
11. Saaty T. L. 1980. The Analytic Hierarchy Process. McGraw Hill International, New York.
12. Mansor M. R., et al. 2011 .Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design. Mater. Des., vol. 51, pp. 484-492. http://dx.doi.org/10.1016/j.matdes.2013.04.072
13. Jessop A. 1999. Entropy in multiattribute problems. Journal of Multi-Criteria Decision Analysis Volume 8, Issue 2. pages 61-70. DOI: 10.1002/(SICI)1099-1360(199903)8:2<61::AID-MCDA230>3.0.CO;2-P
14. Chatterjee P., Athawale V. M., Chakraborty S. 2011 Materials selection using complex proportional assessment and evaluation of mixed data methods, Mater. Des., vol. 32, no. 2, pp. 851–860.
15. Maity S. R., Chatterjee P., Chakraborty S. 2012. Cutting tool material selection using grey complex proportional assessment method, Mater. Des., vol. 36, pp. 372–378.