Radiative heat transfer in H2O and CO2 mixtures

Main Article Content

Yanan Camaraza-Medina

Abstract

In this work, an approximate solution is presented to evaluate the heat exchange by radiation through a gaseous participating medium composed of  and , which is valid for values of the product of the total pressure and the mean beam length (PL) from 0.06 to  and temperatures (T) from 300 K to 2100 K. To approximate the exact solutions, the Spence root weighting method is used. For each set of PL; T values, the values of exact spectral emissivity and absorptivity  and  for the gas mixture are calculated using the analytical solution (AS) and the values of the emissivity and absorptivity of the mixture  and , using the Hottel graphical method (HGM) and the proposed approximate solution. The weaker correlation fit corresponds to the HGM, with mean errors of ±15 % and ±20% for 54.2% and 75.3 % of the data evaluated, respectively, while the proposed method provides the best fit, with mean errors of ±10% and ±15% for 79.4% and 98.6 % of the data evaluated, respectively. In all cases, the agreement of the proposed model with the available experimental data is good enough to be considered satisfactory for practical design.

Article Details

Section
Scientific Paper

References

M. H. Bordbar, G. Wecel, and T. Hyppanen, “A line by line based weighted sum of gray gases model for inhomogeneous CO2–H2O mixture in oxy-fired combustion,” Combustion and Flame, vol. 161, no. 9, pp. 2435–2445, 2014. [Online]. Available: https://doi.org/10.1016/j.combustflame.2014.03.013

M. F. Modest and R. J. Riazzi, “Assembly of full-spectrum k-distributions from a narrow-band database; effects of mixing gases, gases and nongray absorbing particles, and mixtures with nongray scatterers in nongray enclosures,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 90, no. 2, pp. 169–189, 2005. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2004.03.007

M. Cui, X. Gao, and H. Chen, “Inverse radiation analysis in an absorbing, emitting and non-gray participating medium,” International Journal of Thermal Sciences, vol. 50, no. 6, pp. 898–905, 2011. [Online]. Available: https://doi.org/10.1016/j.ijthermalsci.2011.01.018

T. J. Moore and M. R. Jones, “Analysis of the conduction–radiation problem in absorbing, emitting, non-gray planar media using an exact method,” International Journal of Heat and Mass Transfer, vol. 73, pp. 804–809, 2014. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.029

L. J. Dorigon, G. Duciak, R. Brittes, F. Cassol, M. Galarca, and F. H. Franca, “WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, nonhomogeneous H2O/CO2 mixtures,” International Journal of Heat and Mass Transfer, vol. 64, pp. 863–873, 2013. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.010

F. Cassol, R. Brittes, F. H. França, and O. A. Ezekoye, “Application of the weighted-sum-ofgray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot,” International Journal of Heat and Mass Transfer, vol. 79, pp. 796–806, 2014. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.032

F. R. Centeno, R. Brittes, F. H. Franca, and O. A. Ezekoye, “Evaluation of gas radiation heat transfer in a 2D axisymmetric geometry using the line-by-line integration and WSGG models,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 156, pp. 1–11, 2015. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2015.01.015

Y. Camaraza-Medina, “Polynomial cross-roots application for the exchange of radiant energy between two triangular geometries,” Ingenius, Revista de Ciencia y Tecnoloía, no. 30, pp. 29–41, 2023. [Online]. Available: https://doi.org/10.17163/ings.n30.2023.03

M. Alberti, R. Weber, and M. Mancini, “Re-creating Hottel’s emissivity charts for water vapor and extending them to 40 bar pressure using HITEMP-2010 data base,” Combustion and Flame, vol. 169, pp. 141–153, 2016. [Online]. Available: https://doi.org/10.1016/j.combustflame.2016.04.013

——, “Gray gas emissivities for H2O-CO2-CO-N2 mixtures,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 219, pp. 274–291, 2018. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2018.08.008

S. Khivsara, M. U. M. Reddy, K. Reddy, and P. Dutta, “Measurement of radiation heat transfer in supercritical carbon dioxide medium,” Measurement, vol. 139, pp. 40–48, 2019. [Online]. Available: https://doi.org/10.1016/j.measurement.2019.03.012

M. F. Modest and S. Mazumder, “Chapter 4 - view factors,” in Radiative Heat Transfer (Fourth Edition), fourth edition ed., M. F. Modest and S. Mazumder, Eds. Academic Press, 2022, pp. 127–159. [Online]. Available: https://doi.org/10.1016/B978-0-12-818143-0.00012-2

Y. Camaraza-Medina, A. Hernandez-Guerrero, and J. L. Luviano-Ortiz, “Experimental study on influence of the temperature and composition in the steels thermo physical properties for heat transfer applications,” Journal of Thermal Analysis and Calorimetry, vol. 147, no. 21, pp. 11 805–11 821, Nov 2022. [Online]. Available: https://doi.org/10.1007/s10973-022-11410-8

J. Howell, M. Meng"u, K. Daun, and R. Siegel, Thermal Radiation Heat Transfer. CRC Press, 2021. [Online]. Available: https://lc.cx/2KIpyY

J. Farmer and S. Roy, “A quasi-Monte Carlo solver for thermal radiation in participating media,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 242, p. 106753, 2020. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2019.106753

T. Li, X. Lin, Y. Yuan, D. Liu, Y. Shuai, and H. Tan, “Effects of flame temperature and radiation properties on infrared light field imaging,” Case Studies in Thermal Engineering, vol. 36, p. 102215, 2022. [Online]. Available: https://doi.org/10.1016/j.csite.2022.102215

S. Li, Y. Sun, J. Ma, and R. Zhou, “Angularspatial discontinuous galerkin method for radiative heat transfer with a participating medium in complex three-dimensional geometries,” International Communications in Heat and Mass Transfer, vol. 145, p. 106836, 2023. [Online]. Available: https://doi.org/10.1016/j.icheatmasstransfer.2023.106836

J. Avalos-Patiño, S. Dargaville, S. Neethling, and M. Piggott, “Impact of inhomogeneous unsteady participating media in a coupled convection–radiation system using finite element based methods,” International Journal of Heat and Mass Transfer, vol. 176, p. 121452, 2021. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121452

Y. Camaraza-Medina, A. Hernandez-Guerrero and J. L. Luviano-Ortiz, “Analytical view factor solution for radiant heat transfer between two arbitrary rectangular surfaces,” Journal of Thermal Analysis and Calorimetry, vol. 147, no. 24, pp. 14 999–15 016, Dec 2022. [Online]. Available: https://doi.org/10.1007/s10973-022-11646-4

B.-H. Gao, H. Qi, J.-W. Shi, J.-Q. Zhang, Y.-T. Ren, and M.-J. He, “An equation-solving method based on radiation distribution factor for radiative transfer in participating media with diffuse boundaries,” Results in Physics, vol. 36, p. 105418, 2022. [Online]. Available: https://doi.org/10.1016/j.rinp.2022.105418

S. Sun, “Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium,” International Journal of Thermal Sciences, vol. 163, p. 106853, 2021. [Online]. Available: https://doi.org/10.1016/j.ijthermalsci.2021.106853

B.-H. Gao, H. Qi, A.-T. Sun, J.-W. Shi, and Y.-T. Ren, “Effective solution of threedimensional inverse radiation problem in participating medium based on rdfiem,” International Journal of Thermal Sciences, vol. 156, p. 106462, 2020. [Online]. Available: https://doi.org/10.1016/j.ijthermalsci.2020.106462

E. Gümücssu and H. I. Tarman, “Numerical simulation of duct flow in the presence of participating media radiation with total energy based entropic lattice boltzmann method,” International Journal of Thermofluids, vol. 20, p. 100516, 2023. [Online]. Available: https://doi.org/10.1016/j.ijft.2023.100516

Y. Camaraza-Medina, A. M. Rubio-Gonzales, O. M. Cruz Fonticiella, and O. F. Garcia Morales, “Analysis of pressure influence over heat transfer coefficient on air cooled condenser,” Journal Européen des Systèmes Automatisés, vol. 50, no. 3, pp. 213–226, 2017. [Online]. Available: https://doi.org/10.3166/JESA.50.213-226

P. Sadeghi and A. Safavinejad, “Radiative entropy generation in a gray absorbing, emitting, and scattering planar medium at radiative equilibrium,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 201, pp. 17–29, 2017. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2017.06.023

Y. Wang, A. Sergent, D. Saury, D. Lemonnier, and P. Joubert, “Numerical study of an unsteady confined thermal plume under the influence of gas radiation,” International Journal of Thermal Sciences, vol. 156, p. 106474, 2020. [Online]. Available: https://doi.org/10.1016/j.ijthermalsci.2020.106474

Y. Camaraza-Medina, Y. Retirado-Mediaceja, A. Hernandez-Guerrero, and J. Luis Luviano-Ortiz, “Energy efficiency indicators of the steam boiler in a power plant of Cuba,” Thermal Science and Engineering Progress, vol. 23, p. 100880, 2021. [Online]. Available: https://doi.org/10.1016/j.tsep.2021.100880

Y. Camaraza-Medina, A. Hernandez-Guerrero, and J. L. Luviano-Ortiz, “Contour integration for the view factor calculation between two rectangular surfaces,” Heat Transfer, vol. 53, no. 1, pp. 225–243, 2024. [Online]. Available:

https://doi.org/10.1002/htj.22950

——, “Radiant energy exchange through participating media composed of arbitrary concentrations of H2O, CO2, and CO,” Heat Transfer, vol. 53, no. 4, pp. 2073–2094, 2024. [Online]. Available: https://doi.org/10.1002/htj.23026

X. Liu, S. Kelm, M. Kampili, G. V. Kumar, and H.-J. Allelein, “Monte Carlo method with SNBCK nongray gas model for thermal radiation in containment flows,” Nuclear Engineering and Design, vol. 390, p. 111689, 2022. [Online]. Available: https://doi.org/10.1016/j.nucengdes.2022.111689

Y. Camaraza-Medina, A. Hernandez-Guerrero, and J. Luis Luviano-Ortiz, “Contour integration for the exchange of radiant energy between diffuse rectangular geometries,” Thermal Science and Engineering Progress, vol. 47, p. 102289, 2024. [Online]. Available: https://doi.org/10.1016/j.tsep.2023.102289

A. Mukherjee, V. Chandrakar, and J. R. Senapati, “New correlations for infrared suppression devices having louvered diabatic tubes with surface radiation,” Thermal Science and Engineering Progress, vol. 44, p. 102011, 2023. [Online]. Available: https://doi.org/10.1016/j.tsep.2023.102011

V. Chandrakar, A. Mukherjee, and J. R. Senapati, “Free convection heat transfer with surface radiation from infrared suppression system and estimation of cooling time,” Thermal Science and Engineering Progress,

vol. 33, p. 101369, 2022. [Online]. Available: https://doi.org/10.1016/j.tsep.2022.101369

F. Asllanaj, S. Contassot-Vivier, G. C. Fraga, F. H. França, and R. J. da Fonseca, “New gas radiation model of high accuracy based on the principle of weighted sum of gray gases,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 315, p. 108887, 2024. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2023.108887

Y. Camaraza-Medina, A. A. Sánchez Escalona, O. Miguel Cruz-Fonticiella, and O. F. García-Morales, “Method for heat transfer calculation on fluid flow in single-phase inside rough pipes,” Thermal Science and Engineering Progress, vol. 14, p. 100436, 2019. [Online]. Available: https://doi.org/10.1016/j.tsep.2019.100436