Aplicación de raíces cruzadas polinomiales al intercambio de energía radiante entre dos geometrías triangulares

Contenido principal del artículo

Resumen

El factor de visión entre superficies es un elemento esencial en la transferencia de calor por radiación. En la actualidad, la literatura técnica no disponible de un método analítico para calcular los factores de visión en el intercambio de energía radiante entre superficies triangulares. Desarrollar un modelo analítico para geometrías triangulares requiere la suma de integrales múltiples, debido al cambio en los contornos de integración de las superficies, lo cual complejiza obtener la solución de diversas configuraciones. En este trabajo se pretende el desarrollo analítico de una expresión del factor de visión para el intercambio de energía radiante entre 32 configuraciones geométricas triangulares con bordes comunes y ángulo teta incluido. Para establecer comparaciones, fueron calculados 42 ejemplos con diversas configuraciones de forma para cada geometría usando la soluciona analítica (SA), la solución numérica obtenida con la regla múltiple de Simpson 1/3 con cinco intervalos (RMS) y los factores de visión computados mediante las raíz cruzada de Bretzhtsov (RCB). A partir de ocho geometrías básicas, mediante la regla de sumatorias es obtenido el factor de visión para otras 24 geometrías triangulares. En todos los casos evaluados, la RCB mostró los mejores ajustes. La naturaleza práctica de la contribución y los valores razonables de ajuste obtenidos, establecen a la propuesta como una herramienta adecuada para su uso en la ingeniería térmica.

Detalles del artículo

Sección
Ingeniería Mecánica - Energías

Referencias

J. R. Howell and M. P. Menguc, “Radiative transfer configuration factor catalog: A listing of relations for common geometries,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 112, no. 5, pp. 910–912, 2011. [Online]. Available: https://doi.org/10.1016/j.jqsrt.2010.10.002

Y. F. Nassar, “Analytical-numerical computation of view factor for several arrangements of two rectangular surfaces with non-common edge,” International Journal of Heat and Mass Transfer, vol. 159, p. 120130, 2020. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120130

M. F. Modest and S. Mazumder, “Chapter 4 - view factors,” in Radiative Heat Transfer (Fourth Edition), fourth edition ed., M. F. Modest and S. Mazumder, Eds. Academic Press, 2022, pp. 127–159. [Online]. Available: https: //doi.org/10.1016/B978-0-12-818143-0.00012-2

Y. Camaraza-Medina, A. Hernandez-Guerrero, and J. L. Luviano-Ortiz, “Analytical view factor solution for radiant heat transfer between two arbitrary rectangular surfaces,” Journal of Thermal Analysis and Calorimetry, vol. 147, pp. 14 999–15 016, 2022. [Online]. Available: https://doi.org/10.1007/s10973-022-11646-4

Y. Camaraza Medina, Introducción a la termotransferencia. Editorial Universitaria (Cuba), 2020. [Online]. Available: https://bit.ly/44PcgsO

J. R. Howell, A Catalog of Radiation Configuration Factors. McGraw-Hill, 1982. [Online]. Available: https://bit.ly/42qHzIJ

J. R. Howell, M. Pinar Menguc, and R. Siegel, Thermal Radiation Heat Transfer. CRC Press, 2010. [Online]. Available: https://bit.ly/42u9jfy

M. K. Gupta, K. J. Bumtariya, H. Shukla, P. Patel, and Z. Khan, “Methods for evaluation of radiation view factor: A review,” Materials Today: Proceedings, vol. 4, no. 2, Part A, pp. 1236–1243, 2017, 5th International Conference of Materials Processing and Characterization (ICMPC 2016). [Online]. Available:https://doi.org/10.1016/j.matpr.2017.01.143

A. Narayanaswamy, “An analytic expression for Radiation view factor between two arbitrarily oriented planar polygons,” International Journal of Heat and Mass Transfer, vol. 91, pp. 841–847, 2015. [Online]. Available: https://doi.org/10.1016/ j.ijheatmasstransfer.2015.07.131

A. Narayanaswamy and P. Meyappan, “An analytic expression for radiation view factors between two planar triangles with arbitrary orientations,” in Proceedings of CHT-15. 6th International Symposium on ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 12 2015, pp. 1545–1550. [Online]. Available: https://doi.org/10.1615/ICHMT. 2015.IntSympAdvComputHeatTransf.1500

R. Sudharshan Reddy, D. Arepally, and A. Datta, “View factor computation and radiation energy analysis in baking oven with obstructions: Analytical and numerical method,” Journal of Food Process Engineering, vol. 46, p. e14270, 01 2023. [Online]. Available: http://dx.doi.org/10.1111/jfpe.14270

Y. Zhou, R. Duan, X. Zhu, J. Wu, J. Ma, X. Li, and Q. Wang, “An improved model to calculate radiative heat transfer in hot combustion gases,” Combustion Theory and Modelling, vol. 24, no. 5, pp. 829–851, 2020. [Online]. Available: https: //doi.org/10.1080/13647830.2020.1769866 https: //doi.org/10.1080/13647830.2020.1769866

X.-J. Yi, L.-Y. Zhong, T.-B. Wang, W.-X. Liu, D.-J. Zhang, T.-B. Yu, Q.-H. Liao, and N.-H. Liu, “Near-field radiative heat transfer between hyperbolic metasurfaces based on black phosphorus,” The European Physical Journal B, vol. 92, no. 9, p. 217, Sep 2019. [Online]. Available: https://doi.org/10.1140/epjb/e2019-100274-y

J. R. Ehlert and T. F. Smith, “View factors for perpendicular and parallel rectangular plates,” Journal of Thermophysics and Heat Transfer, vol. 7, no. 1, pp. 173–175, 1993. [Online]. Available: https://doi.org/10.2514/3.11587

C. K. Krishnaprakas, “View factor between inclined rectangles,” Journal of Thermophysics and Heat Transfer, vol. 11, no. 3, pp. 480–481, 1997. [Online]. Available: https://doi.org/10.2514/2.6267

H. J. Sauer Jr., “Configuration factors for radiant energy interchange with triangular areas,” ASHRAE Transactions, vol. 80, no. 2, pp. 268–279, 1974. [Online]. Available: https://bit.ly/3I0jXm0

Y. Camaraza-Medina, A. A. Sánchez Escalona, O. Miguel Cruz-Fonticiella, and O. F. García- Morales, “Method for heat transfer calculation on fluid flow in single-phase inside rough pipes,” Thermal Science and Engineering Progress, vol. 14, p. 100436, 2019. [Online]. Available: https://doi.org/10.1016/j.tsep.2019.100436

W. Boeke and L. Wall, “Radiative exchange factors in rectangular spaces for the determination of mean radiant temperatures,” Building services engineering, vol. 43, pp. 244–253, 1976.

F. F. Sönmez, H. Ziar, O. Isabella, and M. Zeman, “Fast and accurate ray-casting-based view factor estimation method for complex geometries,” Solar Energy Materials and Solar Cells, vol. 200, p. 109934, 2019. [Online]. Available: https://doi.org/10.1016/j.solmat.2019.109934

S. Francisco, A. Raimundo, A. Gaspar, A. V. Oliveira, and D. Quintela, “Calculation of view factors for complex geometries using stokes’ theorem,” Journal of Building Performance Simulation, vol. 7, pp. 203–216, 05 2014. [Online]. Available: http: //dx.doi.org/10.1080/19401493.2013.808266

S.-A. Biehs, R. Messina, P. S. Venkataram, A. W. Rodriguez, J. C. Cuevas, and P. Ben- Abdallah, “Near-field radiative heat transfer in many-body systems,” Rev. Mod. Phys., vol. 93, p. 025009, Jun 2021. [Online]. Available: https: //doi.org/10.1103/RevModPhys.93.025009

Y. Camaraza-Medina, A. Hernandez-Guerrero, and J. L. Luviano-Ortiz, “Experimental study on influence of the temperature and composition in the steels thermo physical properties for heat transfer applications,” Journal of Thermal Analysis and Calorimetry, vol. 147, no. 21, pp. 11 805–11 821, Nov 2022. [Online]. Available: https://doi.org/10.1007/s10973-022-11410-8

M. Lakhi and A. Safavinejad, “Numerical investigation of combined force convective–radiative heat transfer in a horizontal channel with lattice boltzmann method,” Journal of Thermal Analysis and Calorimetry, vol. 146, no. 4, pp. 1911–1922, Nov 2021. [Online]. Available: https://doi.org/10.1007/s10973-020-10136-9

M. Bonnici, P. Mollicone, M. Fenech, and M. A. Azzopardi, “Analytical and numerical models for thermal related design of a new pico-satellite,” Applied Thermal Engineering, vol. 159, p. 113908, 2019. [Online]. Available: https: //doi.org/10.1016/j.applthermaleng.2019.113908

Y. Camaraza-Medina, “Methods for the determination of the heat transfer coefficient in air cooled condenser used at biomass power plants,” International Journal of Heat and Technology, vol. 39, no. 5, pp. 1443–1450, 2021. [Online]. Available: https://doi.org/10.18280/ijht.390505