Metodología basada en ciencia de datos para el desarrollo de pronóstico de la generación de energía de una planta solar fotovoltaica
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Universidad Politécnica Salesiana de Ecuador conserva los derechos patrimoniales (copyright) de las obras publicadas y favorecerá la reutilización de las mismas. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento / No Comercial-Sin Obra Derivada 4.0 Ecuador: se pueden copiar, usar, difundir, transmitir y exponer públicamente.
El autor/es abajo firmante transfiere parcialmente los derechos de propiedad (copyright) del presente trabajo a la Universidad Politécnica Salesiana del Ecuador, para las ediciones impresas.
Se declara además haber respetado los principios éticos de investigación y estar libre de cualquier conflicto de intereses.
El autor/es certifican que este trabajo no ha sido publicado, ni está en vías de consideración para su publicación en ninguna otra revista u obra editorial.
El autor/es se responsabilizan de su contenido y de haber contribuido a la concepción, diseño y realización del trabajo, análisis e interpretación de datos, y de haber participado en la redacción del texto y sus revisiones, así como en la aprobación de la versión que finalmente se remite en adjunto.
Referencias
REN21, Renewables 2022 - Global Status Report. Renewables Now - Paris 2022, 2022. [Online]. Available: https://bit.ly/3I09MhE
A. Kumar Mittal, K. Mathur, and S. Mittal, “A review on forecasting the photovoltaic power using machine learning,” Journal of Physics: Conference Series, vol. 2286, no. 1, p. 012010, jul 2022. [Online]. Available: https://dx.doi.org/10.1088/17426596/2286/1/012010
A.-N. Sharkawy, M. Ali, H. Mousa, A. Ali, and G. Abdel-Jaber, “Machine learning method for solar pv output power prediction,” SVU-International Journal of Engineering Sciences and Applications, vol. 3, no. 2, pp. 123–130, 2022. [Online]. Available: https: //doi.org/10.21608/svusrc.2022.157039.1066
D. V. S. Krishna Rao Kasagani and P. Manickam, “Modeling of solar photovoltaic power using a two-stage forecasting system with operation and weather parameters,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 0, no. 0, pp. 1–19, 2022. [Online]. Available: https://doi.org/10.1080/15567036.2022.2032880
D. Pattanaik, S. Mishra, G. P. Khuntia, R. Dash, and S. C. Swain, “An innovative learning approach for solar power forecasting using genetic algorithm and artificial neural network,” Open Engineering, vol. 10, no. 1, pp. 630–641, 2020. [Online]. Available: https://doi.org/10.1515/eng-2020-0073
M. N. Akhter, S. Mekhilef, H. Mokhlis, and N. Mohamed Shah, “Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques,” IET Renewable Power Generation, vol. 13, no. 7, pp. 1009–1023, 2019. [Online]. Available: https://doi.org/10.1049/iet-rpg.2018.5649
M. Alaraj, A. Kumar, I. Alsaidan, M. Rizwan, and M. Jamil, “Energy production forecasting from solar photovoltaic plants based on meteorological parameters for qassim region, Saudi Arabia,” IEEE Access, vol. 9, pp. 83 241–83 251, 2021. [Online]. Available:https://doi.org/10.1109/ACCESS.2021.3087345
Anuradha, K., Erlapally, Deekshitha, Karuna, G., Srilakshmi, V., and Adilakshmi, K., “Analysis of solar power generation forecasting using machine learning techniques,” E3S Web Conf., vol. 309, p. 01163, 2021. [Online]. Available: https://doi.org/10.1051/e3sconf/202130901163
M. Borunda, A. Ramirez, R. Garduno, G. Ruiz, S. Hernandez, and O. A. Jaramillo, “Photovoltaic power generation forecasting for regional assessment using machine learning,” Energies, vol. 15, no. 23, p. 8895, 2022. [Online]. Available: https://doi.org/10.3390/en15238895
J. VanderPlas, Python data science handbook: Essential tools for working with data. O’Reilly Media, Inc., 2016. [Online]. Available: https://bit.ly/3BkwSeM
D. Cielen, A. Meysman, and M. Ali, Introducing Data Science: Big Data, Machine Learning, and more, using Python tools. Manning Publication, 2016. [Online]. Available: https://bit.ly/42wWD80
DuraMAT. (2023) PVDAQ time-series with soiling signal - Data and Resources. Durable Module Materials Consortium. [Online]. Available: https://bit.ly/42NKc7t
SolarDesignTool, Sanyo HIP200BA3 (200W) Solar Panel. SolarDesignTool, 2023. [Online]. Available: https://bit.ly/3pu1dFk
W. McKinney, Python for Data AnalysisOreilly and Associate Series. "O’Reilly Media, Inc.", 2013. [Online]. Available: https://bit.ly/3HZnfGr
A. Navlani, A. Fandango, and I. Idris, Python Data Analysis: Perform data collection, data processing, wrangling, visualization, and model building using Python. Packt Publishing Ltd, 2021. [Online]. Available: https://bit.ly/42voHsb
B. Ratner, Statistical and Machine-Learning Data Mining:: Techniques for Better Predictive Modeling and Analysis of Big Data. CRC Press, 2017. [Online]. Available: https://bit.ly/3VPx933
I. A. Uribe, “Guía metodológica para la selección de técnicas de depuración de datos,” Master’s thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2010. [Online]. Available: https://bit.ly/3VQ5n6t
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to Time Series Analysis and Forecasting. Wiley Series in Probability and Statistics, 2015. [Online]. Available: https://bit.ly/3LTZiRS
J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis. Pearson Education Limited, 2013. [Online]. Available: https://bit.ly/3LWEHMN
V. Platas García, Contrastes de normalidad. Universidade de Santiago de Compostela. Facultade de Matemáticas, 2021. [Online]. Available: https://bit.ly/3MfxZ5Z
A. Gulli, A. Kapoor, and S. Pal, Deep Learning with TensorFlow 2 and Keras. Packt Publishing, 2019. [Online]. Available: https://bit.ly/42MPT5r
J. Moolayil, Learn Keras for Deep Neural Networks: A Fast-Track Approach to Modern Deep Learning with Python. Apress, 2018. [Online]. Available: https://bit.ly/3nMtrL4
F. Chollet, Deep Learning with Python. Manning Publications Company, 2017. [Online]. Available: https://bit.ly/3LV4a9w
G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control. Wiley Series in Probability and Statistics, 2008. [Online]. Available: https://bit.ly/44OEALU
S. Makridakis, S. Wheelright, and R. Hyndman, Manual of Forecasting: Methods and Applications. Wiley-Interscience, 1998. [Online]. Available: http://dx.doi.org/10.13140/RG.2.1.2528.4880
T. C. Mills, Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting. Elsevier, 2019. [Online]. Available: https://bit.ly/42sM5Xd
D. N. Gujarati and D. C. Porter, Econometría. McGraw-Hill Interamericana, 2010. [Online]. Available: https://bit.ly/44Tq0mc