Diagnosis of oral cancer using deep learning algorithms
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Universidad Politécnica Salesiana of Ecuador preserves the copyrights of the published works and will favor the reuse of the works. The works are published in the electronic edition of the journal under a Creative Commons Attribution/Noncommercial-No Derivative Works 4.0 Ecuador license: they can be copied, used, disseminated, transmitted and publicly displayed.
The undersigned author partially transfers the copyrights of this work to the Universidad Politécnica Salesiana of Ecuador for printed editions.
It is also stated that they have respected the ethical principles of research and are free from any conflict of interest. The author(s) certify that this work has not been published, nor is it under consideration for publication in any other journal or editorial work.
The author (s) are responsible for their content and have contributed to the conception, design and completion of the work, analysis and interpretation of data, and to have participated in the writing of the text and its revisions, as well as in the approval of the version which is finally referred to as an attachment.
References
L. A. Zanella-Calzada, C. E. Galván-Tejada, N. M. Chávez-Lamas, J. Rivas-Gutierrez, R. Magallanes-Quintanar, J. M. Celaya-Padilla, J. I. Galván-Tejada, and H. Gamboa-Rosales, “Deep artificial neural networks for the diagnostic of caries using socioeconomic and nutritional features as determinants: Data from nhanes 2013–2014,” Bioengineering, vol. 5, no. 2, 2018. [Online]. Available: https://doi.org/10.3390/bioengineering5020047
J. Shan, R. Jiang, X. Chen, Y. Zhong, W. Zhang, L. Xie, J. Cheng, and H. Jiang, “Machine learning predicts lymph node metastasis in early-stage oral tongue squamous cell carcinoma,” Journal of Oral and Maxillofacial Surgery, vol. 78, no. 12, pp. 2208–2218, 2020. [Online]. Available: https://doi.org/10.1016/j.joms.2020.06.015
A. M. Bur, A. Holcomb, S. Goodwin, J. Woodroof, O. Karadaghy, Y. Shnayder, K. Kakarala, J. Brant, and M. Shew, “Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma,” Oral Oncology, vol. 92, pp. 20–25, 2019. [Online]. Available: https://doi.org/10.1016/j.oraloncology.2019.03.011
O. Kwon, T.-H. Yong, S.-R. Kang, J.-E. Kim, K.-H. Huh, M.-S. Heo, S.-S. Lee, S.-C. Choi, and W.-J. Yi, “Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network,” Dentomaxillofacial Radiology, vol. 49, no. 8, p. 20200185, Dec 2020. [Online]. Available: https://doi.org/10.1259/dmfr.20200185
X. Zhang, Y. Liang, W. Li, C. Liu, D. Gu, W. Sun, and L. Miao, “Development and evaluation of deep learning for screening dental caries from oral photographs,” Oral Diseases, vol. 28, no. 1, pp. 173–181, 2022. [Online]. Available: https://doi.org/10.1111/odi.13735
H.-J. Chang, S.-J. Lee, T.-H. Yong, N.-Y. Shin, B.-G. Jang, J.-E. Kim, K.-H. Huh, S.-S. Lee, M.-S. Heo, S.-C. Choi, T.-I. Kim, and W.-J. Yi, “Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis,” Scientific Reports, vol. 10, no. 1, p. 7531, May 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-64509-z
H. Lin, H. Chen, L. Weng, J. Shao, and J. Lin, “Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis,” Journal of Biomedical Optics, vol. 26, no. 8, p. 086007, 2021. [Online]. Available: https://doi.org/10.1117/1.JBO.26.8.086007
W. Li, Y. Liang, X. Zhang, C. Liu, L. He, L. Miao, and W. Sun, “A deep learning approach to automatic gingivitis screening based on classification and localization in rgb photos,” Scientific Reports, vol. 11, no. 1, p. 16831, Aug 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-96091-3
M. A. Dávila Olivos and F. M. Santos López, “Prediction models of oral diseases: A systematic review of the literature,” in Emerging Research in Intelligent Systems, G. F. Olmedo Cifuentes, D. G. Arcos Avilés, and H. V. Lara Padilla, Eds. Cham: Springer Nature Switzerland, 2024, pp. 309–322. [Online]. Available: https://doi.org/10.1007/978-3-031-52255-0_22
A. Pujara, “Image classification with mobilenet,” Analytics Vidhya, 2020. [Online]. Available: https://n9.cl/coutpg
F. Melo, Receiver Operating Characteristic (ROC) Curve. New York, NY: Springer New York, 2013, pp. 1818–1823. [Online]. Available: https://doi.org/10.1007/978-1-4419-9863-7_242
——, Area under the ROC Curve. New York, NY: Springer New York, 2013, pp. 38–39. [Online]. Available: https://doi.org/10.1007/
-1-4419-9863-7_209
H. Rhys, Machine Learning with R, the tidyverse, and mlr. Manning Publications, 2020. [Online]. Available: https://n9.cl/q3hijw
LabTests Online UK. (2018) Accuracy, precision, specificity & sensitivity. Association for Laboratory Medicine. [Online]. Available: https://n9.cl/8cvyg
J. Martinez Heras. (2018) Machine learning lectures esa. GitHub, Inc. [Online]. Available: https://n9.cl/k41itf
OMS. (2021) Salud bucodental. Organización Mundial de la Salud. [Online]. Available: https://n9.cl/zpz0f
Kaggle. (2020) Oral cancer (lips and tongue) images. Kaggle. [Online]. Available: https://n9.cl/7ftbq
Keras. (2022) Mobilenet, mobilenetv2, and mobilenetv3. Keras. [Online]. Available: https://n9.cl/dcvs2
S. Sharma. (2022) Epoch vs batch size vs iterations. Medium. [Online]. Available: https://n9.cl/wlxncj
S. Manna. (2022) K-fold cross validation for deep learning models using keras. Medium. [Online]. Available: https://n9.cl/hmyvr
Keras. (2022) Earlystopping. Keras. [Online]. Available: https://n9.cl/undx7
——. (2022) Adam. Keras. [Online]. Available: https://n9.cl/x9m53
——. (2022) The sequential class. Keras. [Online]. Available: https://n9.cl/yi56j
GeeksforGeeks. (2022) Keras.conv2d class. Geeks for Geeks. [Online]. Available: https://n9.cl/6bemi
Keras. (2022) Layer activation functions. Keras. [Online]. Available: https://n9.cl/d9yeb
——. (2022) Maxpooling2d layer. Keras. [Online]. Available: https://n9.cl/51sbk
——. (2022) Flatten layer. Keras. [Online]. Available: https://n9.cl/cufk4
I. Hull, Dense layers – Introduction to tensorflow in Python. DataCamp. [Online]. Available: https://n9.cl/hny28
Keras. (2022) Dropout layer. Keras. [Online]. Available: https://n9.cl/02hdv
——. (2022) Metrics. Keras. [Online]. Available: https://n9.cl/jmihj
——. (2022) Probabilistic metrics. Keras. [Online]. Available: https://n9.cl/b3w2a
——. (2022) Accuracy metrics. Keras. [Online]. Available: https://n9.cl/7l3dt
Data Science Team. (2020) Validación cruzada k-fold. Data Science Team. [Online]. Available: https://n9.cl/c2i0bp
R. Delgado. (2018) Introducción a la validación cruzada (k-fold cross validation) en r. Amazonaws. [Online]. Available: https://n9.cl/ijyq
S. Yildirim. (2020) How to train test split : Kfold vs stratifiedkfold. Medium. [Online]. Available: https://n9.cl/ymp9q
Keras. (2022) Python & numpy utilities. Keras. [Online]. Available: https://n9.cl/zrhgh
J. Utrera Burgal. (2019) Tratamiento de imágenes usando imagedatagenerator en keras. Knowmad mood. [Online]. Available: https://n9.cl/5gobr
Keras. (2022) Model training apis. Keras. [Online]. Available: https://n9.cl/4gjr6
——. (2022) Modelcheckpoint. Keras. [Online]. Available: https://n9.cl/wvut7
Tensorflow. (2022) Guardar y cargar modelos. TensorFlow. [Online]. Available: https://n9.cl/cjflnu
Scikit Learn. (2022) sklearn.metrics.confusion matrix. Scikit-learn developers. [Online]. Available: https://n9.cl/ya6b1h
Matplotlib. (2022) matplotlib.pyplot.subplot. Matplotlib. [Online]. Available: https://n9.cl/
vlv1fe
Keras. (2022) Grad-cam class activation visualization. Keras. [Online]. Available: https://n9.cl/r5l7k
Scikitlearn. (2022) sklearn.metrics.roc curve. Scikitlearn. [Online]. Available: https://n9.cl/qles5
——. (2022) sklearn.metrics.roc auc score. Scikitlearn. [Online]. Available: https://n9.cl/1zf6r