Diagnosis of oral cancer using deep learning algorithms

Main Article Content

Mayra Alejandra Dávila Olivos
Henry Miguel Herrera Del Águila
Félix Melchor Santos López

Abstract

The aim of this study was to use deep learning for the automatic diagnosis of oral cancer, employing images of the lips, mucosa, and oral cavity. A deep convolutional neural network (CNN) model, augmented with data, was proposed to enhance oral cancer diagnosis. We developed a Mobile Net deep CNN designed to detect and classify oral cancer in the lip, mucosa, and oral cavity areas. The dataset comprised 131 images, including 87 positive and 44 negative cases. Additionally, we expanded the dataset by varying cropping, focus, rotation, brightness, and flipping. The diagnostic performance of the proposed CNN was evaluated by calculating accuracy, precision, recall, F1 score, and area under the curve (AUC) for oral cancer. The CNN achieved an overall diagnostic accuracy of 90.9% and an AUC of 0.91 with the dataset for oral cancer. Despite the limited number of images of lips, mucosa, and oral cavity, the CNN method developed for the automatic diagnosis of oral cancer demonstrated high accuracy, precision, recall, F1 score, and AUC when augmented with data.

Article Details

Section
Scientific Paper

References

L. A. Zanella-Calzada, C. E. Galván-Tejada, N. M. Chávez-Lamas, J. Rivas-Gutierrez, R. Magallanes-Quintanar, J. M. Celaya-Padilla, J. I. Galván-Tejada, and H. Gamboa-Rosales, “Deep artificial neural networks for the diagnostic of caries using socioeconomic and nutritional features as determinants: Data from nhanes 2013–2014,” Bioengineering, vol. 5, no. 2, 2018. [Online]. Available: https://doi.org/10.3390/bioengineering5020047

J. Shan, R. Jiang, X. Chen, Y. Zhong, W. Zhang, L. Xie, J. Cheng, and H. Jiang, “Machine learning predicts lymph node metastasis in early-stage oral tongue squamous cell carcinoma,” Journal of Oral and Maxillofacial Surgery, vol. 78, no. 12, pp. 2208–2218, 2020. [Online]. Available: https://doi.org/10.1016/j.joms.2020.06.015

A. M. Bur, A. Holcomb, S. Goodwin, J. Woodroof, O. Karadaghy, Y. Shnayder, K. Kakarala, J. Brant, and M. Shew, “Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma,” Oral Oncology, vol. 92, pp. 20–25, 2019. [Online]. Available: https://doi.org/10.1016/j.oraloncology.2019.03.011

O. Kwon, T.-H. Yong, S.-R. Kang, J.-E. Kim, K.-H. Huh, M.-S. Heo, S.-S. Lee, S.-C. Choi, and W.-J. Yi, “Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network,” Dentomaxillofacial Radiology, vol. 49, no. 8, p. 20200185, Dec 2020. [Online]. Available: https://doi.org/10.1259/dmfr.20200185

X. Zhang, Y. Liang, W. Li, C. Liu, D. Gu, W. Sun, and L. Miao, “Development and evaluation of deep learning for screening dental caries from oral photographs,” Oral Diseases, vol. 28, no. 1, pp. 173–181, 2022. [Online]. Available: https://doi.org/10.1111/odi.13735

H.-J. Chang, S.-J. Lee, T.-H. Yong, N.-Y. Shin, B.-G. Jang, J.-E. Kim, K.-H. Huh, S.-S. Lee, M.-S. Heo, S.-C. Choi, T.-I. Kim, and W.-J. Yi, “Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis,” Scientific Reports, vol. 10, no. 1, p. 7531, May 2020. [Online]. Available: https://doi.org/10.1038/s41598-020-64509-z

H. Lin, H. Chen, L. Weng, J. Shao, and J. Lin, “Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis,” Journal of Biomedical Optics, vol. 26, no. 8, p. 086007, 2021. [Online]. Available: https://doi.org/10.1117/1.JBO.26.8.086007

W. Li, Y. Liang, X. Zhang, C. Liu, L. He, L. Miao, and W. Sun, “A deep learning approach to automatic gingivitis screening based on classification and localization in rgb photos,” Scientific Reports, vol. 11, no. 1, p. 16831, Aug 2021. [Online]. Available: https://doi.org/10.1038/s41598-021-96091-3

M. A. Dávila Olivos and F. M. Santos López, “Prediction models of oral diseases: A systematic review of the literature,” in Emerging Research in Intelligent Systems, G. F. Olmedo Cifuentes, D. G. Arcos Avilés, and H. V. Lara Padilla, Eds. Cham: Springer Nature Switzerland, 2024, pp. 309–322. [Online]. Available: https://doi.org/10.1007/978-3-031-52255-0_22

A. Pujara, “Image classification with mobilenet,” Analytics Vidhya, 2020. [Online]. Available: https://n9.cl/coutpg

F. Melo, Receiver Operating Characteristic (ROC) Curve. New York, NY: Springer New York, 2013, pp. 1818–1823. [Online]. Available: https://doi.org/10.1007/978-1-4419-9863-7_242

——, Area under the ROC Curve. New York, NY: Springer New York, 2013, pp. 38–39. [Online]. Available: https://doi.org/10.1007/

-1-4419-9863-7_209

H. Rhys, Machine Learning with R, the tidyverse, and mlr. Manning Publications, 2020. [Online]. Available: https://n9.cl/q3hijw

LabTests Online UK. (2018) Accuracy, precision, specificity & sensitivity. Association for Laboratory Medicine. [Online]. Available: https://n9.cl/8cvyg

J. Martinez Heras. (2018) Machine learning lectures esa. GitHub, Inc. [Online]. Available: https://n9.cl/k41itf

OMS. (2021) Salud bucodental. Organización Mundial de la Salud. [Online]. Available: https://n9.cl/zpz0f

Kaggle. (2020) Oral cancer (lips and tongue) images. Kaggle. [Online]. Available: https://n9.cl/7ftbq

Keras. (2022) Mobilenet, mobilenetv2, and mobilenetv3. Keras. [Online]. Available: https://n9.cl/dcvs2

S. Sharma. (2022) Epoch vs batch size vs iterations. Medium. [Online]. Available: https://n9.cl/wlxncj

S. Manna. (2022) K-fold cross validation for deep learning models using keras. Medium. [Online]. Available: https://n9.cl/hmyvr

Keras. (2022) Earlystopping. Keras. [Online]. Available: https://n9.cl/undx7

——. (2022) Adam. Keras. [Online]. Available: https://n9.cl/x9m53

——. (2022) The sequential class. Keras. [Online]. Available: https://n9.cl/yi56j

GeeksforGeeks. (2022) Keras.conv2d class. Geeks for Geeks. [Online]. Available: https://n9.cl/6bemi

Keras. (2022) Layer activation functions. Keras. [Online]. Available: https://n9.cl/d9yeb

——. (2022) Maxpooling2d layer. Keras. [Online]. Available: https://n9.cl/51sbk

——. (2022) Flatten layer. Keras. [Online]. Available: https://n9.cl/cufk4

I. Hull, Dense layers – Introduction to tensorflow in Python. DataCamp. [Online]. Available: https://n9.cl/hny28

Keras. (2022) Dropout layer. Keras. [Online]. Available: https://n9.cl/02hdv

——. (2022) Metrics. Keras. [Online]. Available: https://n9.cl/jmihj

——. (2022) Probabilistic metrics. Keras. [Online]. Available: https://n9.cl/b3w2a

——. (2022) Accuracy metrics. Keras. [Online]. Available: https://n9.cl/7l3dt

Data Science Team. (2020) Validación cruzada k-fold. Data Science Team. [Online]. Available: https://n9.cl/c2i0bp

R. Delgado. (2018) Introducción a la validación cruzada (k-fold cross validation) en r. Amazonaws. [Online]. Available: https://n9.cl/ijyq

S. Yildirim. (2020) How to train test split : Kfold vs stratifiedkfold. Medium. [Online]. Available: https://n9.cl/ymp9q

Keras. (2022) Python & numpy utilities. Keras. [Online]. Available: https://n9.cl/zrhgh

J. Utrera Burgal. (2019) Tratamiento de imágenes usando imagedatagenerator en keras. Knowmad mood. [Online]. Available: https://n9.cl/5gobr

Keras. (2022) Model training apis. Keras. [Online]. Available: https://n9.cl/4gjr6

——. (2022) Modelcheckpoint. Keras. [Online]. Available: https://n9.cl/wvut7

Tensorflow. (2022) Guardar y cargar modelos. TensorFlow. [Online]. Available: https://n9.cl/cjflnu

Scikit Learn. (2022) sklearn.metrics.confusion matrix. Scikit-learn developers. [Online]. Available: https://n9.cl/ya6b1h

Matplotlib. (2022) matplotlib.pyplot.subplot. Matplotlib. [Online]. Available: https://n9.cl/

vlv1fe

Keras. (2022) Grad-cam class activation visualization. Keras. [Online]. Available: https://n9.cl/r5l7k

Scikitlearn. (2022) sklearn.metrics.roc curve. Scikitlearn. [Online]. Available: https://n9.cl/qles5

——. (2022) sklearn.metrics.roc auc score. Scikitlearn. [Online]. Available: https://n9.cl/1zf6r