Optimization of the VARTM Process for Prototyping a Bumper Using Hybrid Composite Materials

Main Article Content

Diego Javier Jiménez-Pereira
Christian Augusto Picoita-Camacho

Abstract

To provide an alternative for manufacturing auto parts using composite materials, the Vacuum Assisted Resin Transfer Molding (VARTM) process was utilized to prototype the bumper for the Chevrolet Aveo vehicle. This technique emerges as an alternative for composite material manufacturing, allowing for rapid and high-quality production of advanced composites. In this study, a hybrid composite material reinforced with fiberglass, cabuya fiber, IN2 epoxy resin, an infusion mesh, peel ply, and a vacuum bag was employed. To optimize the VARTM process in bumper prototyping, several simulations of resin flow were conducted with different locations of resin injection and vacuum entry points. Autodesk Moldflow Insight software facilitated the modification and addition of resin injection points to observe the flow evolution, thus determining the filling time for each proposed design. Six different designs were applied for the bumper mold filling. The proposed linear flow design reduced the total filling time of the bumper mold by 81.56% compared to the other five designs analyzed. The result of the numerical simulation was validated through the experimental process, where a high degree of concordance in the mold filling time was achieved between both methods.

Article Details

Section
Scientific Paper

References

P. Mitschang and K. Hildebrandt, “8 - polymer and composite moulding technologies for automotive applications,” in Advanced Materials in Automotive Engineering, J. Rowe, Ed. Woodhead Publishing, 2012, pp. 210–229. [Online]. Available: https://doi.org/10.1533/9780857095466.210

L. A. Khan, A. H. Mahmood, B. Hassan, T. Sharif, S. Khushnod, and Z. M. Khan, “Cost-effective manufacturing process for the development of automotive from energy efficient composite materials and sandwich structures,” Polymer Composites, vol. 35, no. 1, pp. 97–104, 2014. [Online]. Available: https://doi.org/10.1002/pc.22638

J. Summerscales, Resin Infusion Under Flexible Tooling (RIFT). John Wiley & Sons, Ltd, 2012, pp. 1–11. [Online]. Available: https://doi.org/10.1002/9781118097298.weoc216

R. K. Du, F. F. Wang, X. H. Chen, Y. F. Zhang, G. Z. Zhao, and Y. Q. Liu, “Flow simulation and optimization of the car bumper beam by VARTM process,” in Materials Processing and Manufacturing III, ser. Advanced Materials Research, vol. 753. Trans Tech Publications Ltd, 10 2013, pp. 236–240. [Online]. Available: https://doi.org/10.4028/www.scientific.net/AMR.753-755.236

S. Sunaryo, G. L. Putra, and S. M. Lestari, “Thickness and fiber content optimization in VARTM method for high speed craft,” in Advances in Materials, Processing and Manufacturing, ser. Advanced Materials Research, vol. 789. Trans Tech Publications Ltd, 11 2013, pp. 412–416. [Online]. Available: https://doi.org/10.4028/www.scientific.net/AMR.789.412

J. G. Anchatuña Leóón and V. H. Loachamín Navarrete, Construcci’on de un prototipo de cubreneum’atico mediante moldeo por transferencia de resina de compuestos. Tesis Maestría, 2015. [Online]. Available: https://acortar.link/TfrUvy

D. G. Chávez Pachón and E. R. Ledesma Orozco, “Fabricación en fibra de carbón de un accesorio automotriz utilizando el método de transferencia de resina,” Jóvenes en la ciencia, vol. 2, no. 1, pp. 1838–1842, 2017. [Online]. Available: https://acortar.link/kKHR3L

J. Porto, M. Letzow, E. dos Santos, S. Amico, J. Avila Souza, and L. Isoldi, “Computational modeling of RTM and LRTM processes applied to complex geometries,” Revista de Engenharia Térmica, vol. 11, pp. 93–99, 10 2018. [Online]. Available: http://dx.doi.org/10.5380/reterm.v11i1-2.62007

C. Wang, G. Yue, G. Bai, L. Pan, and B. Zhang, “Compaction behavior and permeability property tests of preforms in vacuum-assisted resin transfer molding using a combined device,” Measurement, vol. 90, pp. 357–364, 2016. [Online]. Available: https://doi.org/10.1016/j.measurement.2016.04.058

M. Poorzeinolabedin, L. Parnas, and S. H. Dashatan, “Resin infusion under flexible tooling process and structural design optimization of the complex composite part,” Materials & Design, vol. 64, pp. 450–455, 2014. [Online]. Available: https://doi.org/10.1016/j.matdes.2014.08.008

P. Simacek and S. G. Advani, “Resin flow modeling in compliant porous media: an efficient approach for liquid composite molding,” International Journal of Material Forming, vol. 11, no. 4, pp. 503–515, Jul 2018. [Online]. Available: https://doi.org/10.1007/s12289-017-1360-9

C. Li, M. Xu, and Y. Tie, “Simulation analysis of wind turbine blade during resin transfer molding process,” Materials Physics and Mechanics, vol. 18, pp. 127–134, 01 2013. [Online]. Available: https://acortar.link/Kqm2K2

S. Laurenzi, A. Grilli, M. Pinna, F. De Nicola, G. Cattaneo, and M. Marchetti, “Process simulation for a large composite aeronautic beam by resin transfer molding,” Composites Part B: Engineering, vol. 57, pp. 47–55, 2014. [Online]. Available: https://doi.org/10.1016/j.compositesb.2013.09.039

M. A. Córdova Suárez and J. G. Paredes Salinas, Estudio de polímeros híbridos estratificados de matriz poliester reforzada con fibra de vidrio y cabuya como material alternativo y su incidencia en las propiedades mecánicas en guardachoques para buses. Tesis de Maestria, Universaidad Tecnica de Ambato, 2012. [Online]. Available: https://acortar.link/BkoiLh

J. M. Tixe Subina and J. D. Vistín Bastidas, Aplicación de materiales compuestos para la formación de guardabarros y tapas laterales de una moto de 125cc, 4 tiempos. Tesis de grado, Escuela Superior Politécnica del Chimborazo, 2015. [Online]. Available: https://acortar.link/op1pAM

V. Pachacama, Diseño, caracterización y aplicación de un material compuesto con base de resina epoxi y refuerzo de fibras orgánicas para la aplicación en un prototipo de capot de la camioneta Mazda BT50. Tesis de Grado, Universidad de las Fuerzas Armadas, 2015. [Online]. Available: https://acortar.link/bbOfKF

D. B. Peralta-Zurita, D. Jimenez-Pereira, J. V. Molina-Osejos, and G. A. Moreno-Jiménez, “Permeability characterization of a composite reinforced material with fiberglass and cabuya by vartm process. case hybrid material,” in Recent Advances in Electrical Engineering, Electronics and Energy, M. Botto Tobar, H. Cruz, and A. Díaz Cadena, Eds. Cham: Springer International Publishing, 2021, pp. 16–30. [Online]. Available: https://doi.org/10.1007/978-3-030-72212-8_2

E. Ruiz and F. Trochu, “19 - flow modeling in composite reinforcements,” in Composite Reinforcements for Optimum Performance, ser. Woodhead Publishing Series in Composites Science and Engineering, P. Boisse, Ed. Woodhead Publishing, 2011, pp. 588–615. [Online]. Available: https://doi.org/10.1533/9780857093714.4.588

C. L. R. Polowick, Optimizing vacuum assisted resin transfer moulding (VARTM) processing parameters to improve part quality. PhD Thesis Carleton University, 2013. [Online]. Available: https://acortar.link/WgvVAV

E. Díaz Escriche, Simulación y control de los procesos de transferencia de resina en moldes flexibles mediante modelos de permeabilidad equivalente. PhD Tesis, Universidad Politecnica de Valencia, 2012. [Online]. Available: https://doi.org/10.4995/Thesis/10251/17321