Correlación para el cálculo de la fricción turbulenta en tuberías
Contenido principal del artículo
Resumen
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La Universidad Politécnica Salesiana de Ecuador conserva los derechos patrimoniales (copyright) de las obras publicadas y favorecerá la reutilización de las mismas. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento / No Comercial-Sin Obra Derivada 4.0 Ecuador: se pueden copiar, usar, difundir, transmitir y exponer públicamente.
El autor/es abajo firmante transfiere parcialmente los derechos de propiedad (copyright) del presente trabajo a la Universidad Politécnica Salesiana del Ecuador, para las ediciones impresas.
Se declara además haber respetado los principios éticos de investigación y estar libre de cualquier conflicto de intereses.
El autor/es certifican que este trabajo no ha sido publicado, ni está en vías de consideración para su publicación en ninguna otra revista u obra editorial.
El autor/es se responsabilizan de su contenido y de haber contribuido a la concepción, diseño y realización del trabajo, análisis e interpretación de datos, y de haber participado en la redacción del texto y sus revisiones, así como en la aprobación de la versión que finalmente se remite en adjunto.
Referencias
F. M. White, Fluid Mechanics. McGraw Hill, 2011. [Online]. Available: https://bit.ly/3ICSyXO
Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications. McGraw- HillHigher Education, 2011. [Online]. Available: https://bit.ly/43sCUX3
S. L. B. Tolentino Masgo, “Estudio experimental y numérico de la presión del flujo de agua en un tubo Venturi,” Ingenius, Revista de Ciencia y Tecnología, no. 23, pp. 9–22, 2020. [Online]. Available: https://doi.org/10.17163/ings.n23.2020.01
O. Reynolds, “Xxix. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Philosophical Transactions of the Royal Society of London, vol. 174, pp. 935–982, 1883. [Online]. Available: https://doi.org/10.1098/rstl.1883.0029
C. F. Colebrook, C. M. White, and G. I. Taylor, “Experiments with fluid friction in roughened pipes,” Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 161, no. 906, pp. 367–381, 1937. [Online]. Available: https://doi.org/10.1098/rspa.1937.0150
C. F. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws,” Journal of the Institution of Civil Engineers, vol. 11, no. 4, pp. 133–156, 1939. [Online]. Available: https://doi.org/10.1680/ijoti.1939.13150
L. F. Moody and N. J. Princeton, “Friction factor for pipe flow,” Transaction of ASME, vol. 66, pp. 671–684, 1944. [Online]. Available: https://bit.ly/3BRgxyL
P. K. Swamee and A. K. Jain, “Explicit equations for pipe-flow problems,” Journal of the Hydraulics Division, vol. 102, no. 5, pp. 657–664, 1976. [Online]. Available: https://doi.org/10.1061/JYCEAJ.0004542
S. E. Haaland, “Simple and explicit formulas for the friction factor in turbulent pipe flow,” Journal of Fluids Engineering, vol. 105, no. 1, pp. 89–90, Mar 1983. [Online]. Available: https://doi.org/10.1115/1.3240948
Y. Mikata and W. S. Walczak, “Exact analytical solutions of the colebrook-white equation,” Journal of Hydraulic Engineering, vol. 142, no. 2, p. 04015050, 2016. [Online]. Available: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001074
P. Rollmann and K. Spindler, “Explicit representation of the implicit colebrook–white equation,” Case Studies in Thermal Engineering, vol. 5, pp. 41–47, 2015. [Online]. Available: https://doi.org/10.1016/j.csite.2014.12.001
D. Biberg, “Fast and accurate approximations for the colebrook equation,” Journal of Fluids Engineering, vol. 139, no. 3, Dec 2016, 031401. [Online]. Available: https://doi.org/10.1115/1.4034950
T. K. Seguides, “Estimate friction factor accurately,” Chemical Engineering Journal, vol. 91, pp. 63–64, 1984. [Online]. Available: https://bit.ly/3oqUTyd
A. R. Vatankhah, “Approximate analytical solutions for the colebrook equation,” Journal of Hydraulic Engineering, vol. 144, no. 5, p. 06018007, 2018. [Online]. Available: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001454
N. Azizi, R. Homayoon, and M. R. Hojjati, “Predicting the Colebrook-white friction factor in the pipe flow by new explicit correlations,” Journal of Fluids Engineering, vol. 141, no. 5, Nov 2018, 051201. [Online]. Available: https://doi.org/10.1115/1.4041232
N. H. Chen, “An explicit equation for friction factor in pipe,” Industrial & Engineering Chemistry Fundamentals, vol. 18, no. 3, pp. 296–297, 1979. [Online]. Available: https://doi.org/10.1021/i160071a019
B. J. Schorle, S. W. Churchill, and M. Shacham, “Comments on: "an explicit equation for friction factor in pipe",” Industrial & Engineering Chemistry Fundamentals, vol. 19, no. 2, pp. 228–228, 1980. [Online]. Available: https://doi.org/10.1021/i160074a019
D. J. Zigrang and N. D. Sylvester, “A review of explicit friction factor equations,” Journal of Energy Resources Technology, vol. 107, no. 2, pp. 280–283, 1985. [Online]. Available: https://doi.org/10.1115/1.3231190
J. Sousa, M. d. C. Cunha, and A. S. Marques, “An explicit solution of the colebrook-white equation through simulated annealing,” Water Industry Systems: Modelling and Optimization Applications, vol. 2, pp. 347–355, 1999.
E. Romeo, C. Royo, and A. Monzon, “Improved explicit equations for estimation of the friction factor in rough and smooth pipes,” Chemical Engineering Journal, vol. 86, pp. 369–374, 04 2002. [Online]. Available:http://dx.doi.org/10.1016/S13858947(01)00254-6
U. Offor and S. Alabi, “An accurate and computationally efficient explicit friction factor model,” Advances in Chemical Engineering and Science, no. 6, pp. 237–245, 2016. [Online]. Available: http://dx.doi.org/10.4236/aces.2016.63024
I. Santos-Ruiz, J. R. Bermúdez, F. R. López-Estrada, V. Puig, and L. Torres, “Estimación experimental de la rugosidad y del factor de fricción en una tubería,” in Memorias del Congreso Nacional de Control Automático, San Luis Potosí, México,, 2018, pp. 489–494. [Online]. Available: https://bit.ly/3oubv8g
A. P. Olivares-Gallardo, R. A. Guerra-Rojas, and M. A. Alfaro-Guerra, “Evaluación experimental de la solución analítica exacta de la ecuación de colebrook-white,” Ingeniería Investigación y Tecnología, vol. 2, pp. 1–11, 2019. [Online]. Available: https://doi.org/10.22201/fi.25940732e.2019.20n2.021
J. R. Perez Pupo, J. N. Guerrero, and M. Batista Zaldivar, “On the explicit expressions for the determination of the friction factor in turbulent regime,” Revista mexicana de ingeniería química, vol. 19, pp. 313–334, 01 2020. [Online]. Available: https://bit.ly/3BUtqrD
D. Brkic and Z. Stajic, “Excel VBA-based user defined functions for highly precise colebrook’s pipe flow friction approximations: a comparative overview,” FACTA UNIVERSITATIS Series: Mechanical Engineering, vol. 19, no. 2, pp. 253–269, 2021. [Online]. Available: https://doi.org/10.22190/FUME210111044B
P. Praks and D. Brkic, “Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction,” Advances in Civil Engineering, 2018. [Online]. Available: https://doi.org/10.1155/2018/5451034
A. A. Lamri and S. M. Easa, “Computationally efficient and accurate solution for colebrook equation based on lagrange theorem,” Journal of Fluids Engineering, vol. 144, p. 014504, 2022. [Online]. Available: https://doi.org/10.1115/1.4051731