Correlación para el cálculo de la fricción turbulenta en tuberías

Contenido principal del artículo

Resumen

En los sistemas hidráulicos de redes de tuberías, uno de los parámetros fundamentales es el factor de fricción lambda. El factor de fricción se determina con la ecuación implícita de Colebrook-White por medios iterativos, lo cual dificulta su aplicación. En el presente trabajo se construye una correlación basada en el método recursivo para el cálculo del factor de fricción, para lo cual se empleó la ecuación de Colebrook-White. Para el cierre de la correlación se proponen dos relaciones empíricas, donde sus coeficientes y exponentes fueron calibrados en Excel 2019. Se compararon los resultados de las dos relaciones que se proponen con las relaciones de Swamee-Jain y Haaland, para incrementos recursivos, donde para la correlación lambda8 se obtuvo el error porcentual máximo del factor de fricción de 0,0000017 %, para la rugosidad relativa de 0,00001 y número de Reynolds 4000; así como, los decimales arrojaron siete dígitos decimales exactos para el factor de fricción. Para Reynolds mayores de 4000, el error porcentual disminuye. Se concluye que la correlación en función de las relaciones explícitas que se proponen satisface a la solución de la ecuación implícita de Colebrook-White.

Detalles del artículo

Sección
Ingeniería Mecánica - Fluidos

Referencias

F. M. White, Fluid Mechanics. McGraw Hill, 2011. [Online]. Available: https://bit.ly/3ICSyXO

Y. A. Cengel and J. M. Cimbala, Fluid Mechanics: Fundamentals and Applications. McGraw- HillHigher Education, 2011. [Online]. Available: https://bit.ly/43sCUX3

S. L. B. Tolentino Masgo, “Estudio experimental y numérico de la presión del flujo de agua en un tubo Venturi,” Ingenius, Revista de Ciencia y Tecnología, no. 23, pp. 9–22, 2020. [Online]. Available: https://doi.org/10.17163/ings.n23.2020.01

O. Reynolds, “Xxix. an experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Philosophical Transactions of the Royal Society of London, vol. 174, pp. 935–982, 1883. [Online]. Available: https://doi.org/10.1098/rstl.1883.0029

C. F. Colebrook, C. M. White, and G. I. Taylor, “Experiments with fluid friction in roughened pipes,” Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, vol. 161, no. 906, pp. 367–381, 1937. [Online]. Available: https://doi.org/10.1098/rspa.1937.0150

C. F. Colebrook, “Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws,” Journal of the Institution of Civil Engineers, vol. 11, no. 4, pp. 133–156, 1939. [Online]. Available: https://doi.org/10.1680/ijoti.1939.13150

L. F. Moody and N. J. Princeton, “Friction factor for pipe flow,” Transaction of ASME, vol. 66, pp. 671–684, 1944. [Online]. Available: https://bit.ly/3BRgxyL

P. K. Swamee and A. K. Jain, “Explicit equations for pipe-flow problems,” Journal of the Hydraulics Division, vol. 102, no. 5, pp. 657–664, 1976. [Online]. Available: https://doi.org/10.1061/JYCEAJ.0004542

S. E. Haaland, “Simple and explicit formulas for the friction factor in turbulent pipe flow,” Journal of Fluids Engineering, vol. 105, no. 1, pp. 89–90, Mar 1983. [Online]. Available: https://doi.org/10.1115/1.3240948

Y. Mikata and W. S. Walczak, “Exact analytical solutions of the colebrook-white equation,” Journal of Hydraulic Engineering, vol. 142, no. 2, p. 04015050, 2016. [Online]. Available: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001074

P. Rollmann and K. Spindler, “Explicit representation of the implicit colebrook–white equation,” Case Studies in Thermal Engineering, vol. 5, pp. 41–47, 2015. [Online]. Available: https://doi.org/10.1016/j.csite.2014.12.001

D. Biberg, “Fast and accurate approximations for the colebrook equation,” Journal of Fluids Engineering, vol. 139, no. 3, Dec 2016, 031401. [Online]. Available: https://doi.org/10.1115/1.4034950

T. K. Seguides, “Estimate friction factor accurately,” Chemical Engineering Journal, vol. 91, pp. 63–64, 1984. [Online]. Available: https://bit.ly/3oqUTyd

A. R. Vatankhah, “Approximate analytical solutions for the colebrook equation,” Journal of Hydraulic Engineering, vol. 144, no. 5, p. 06018007, 2018. [Online]. Available: https://doi.org/10.1061/(ASCE)HY.1943-7900.0001454

N. Azizi, R. Homayoon, and M. R. Hojjati, “Predicting the Colebrook-white friction factor in the pipe flow by new explicit correlations,” Journal of Fluids Engineering, vol. 141, no. 5, Nov 2018, 051201. [Online]. Available: https://doi.org/10.1115/1.4041232

N. H. Chen, “An explicit equation for friction factor in pipe,” Industrial & Engineering Chemistry Fundamentals, vol. 18, no. 3, pp. 296–297, 1979. [Online]. Available: https://doi.org/10.1021/i160071a019

B. J. Schorle, S. W. Churchill, and M. Shacham, “Comments on: "an explicit equation for friction factor in pipe",” Industrial & Engineering Chemistry Fundamentals, vol. 19, no. 2, pp. 228–228, 1980. [Online]. Available: https://doi.org/10.1021/i160074a019

D. J. Zigrang and N. D. Sylvester, “A review of explicit friction factor equations,” Journal of Energy Resources Technology, vol. 107, no. 2, pp. 280–283, 1985. [Online]. Available: https://doi.org/10.1115/1.3231190

J. Sousa, M. d. C. Cunha, and A. S. Marques, “An explicit solution of the colebrook-white equation through simulated annealing,” Water Industry Systems: Modelling and Optimization Applications, vol. 2, pp. 347–355, 1999.

E. Romeo, C. Royo, and A. Monzon, “Improved explicit equations for estimation of the friction factor in rough and smooth pipes,” Chemical Engineering Journal, vol. 86, pp. 369–374, 04 2002. [Online]. Available:http://dx.doi.org/10.1016/S13858947(01)00254-6

U. Offor and S. Alabi, “An accurate and computationally efficient explicit friction factor model,” Advances in Chemical Engineering and Science, no. 6, pp. 237–245, 2016. [Online]. Available: http://dx.doi.org/10.4236/aces.2016.63024

I. Santos-Ruiz, J. R. Bermúdez, F. R. López-Estrada, V. Puig, and L. Torres, “Estimación experimental de la rugosidad y del factor de fricción en una tubería,” in Memorias del Congreso Nacional de Control Automático, San Luis Potosí, México,, 2018, pp. 489–494. [Online]. Available: https://bit.ly/3oubv8g

A. P. Olivares-Gallardo, R. A. Guerra-Rojas, and M. A. Alfaro-Guerra, “Evaluación experimental de la solución analítica exacta de la ecuación de colebrook-white,” Ingeniería Investigación y Tecnología, vol. 2, pp. 1–11, 2019. [Online]. Available: https://doi.org/10.22201/fi.25940732e.2019.20n2.021

J. R. Perez Pupo, J. N. Guerrero, and M. Batista Zaldivar, “On the explicit expressions for the determination of the friction factor in turbulent regime,” Revista mexicana de ingeniería química, vol. 19, pp. 313–334, 01 2020. [Online]. Available: https://bit.ly/3BUtqrD

D. Brkic and Z. Stajic, “Excel VBA-based user defined functions for highly precise colebrook’s pipe flow friction approximations: a comparative overview,” FACTA UNIVERSITATIS Series: Mechanical Engineering, vol. 19, no. 2, pp. 253–269, 2021. [Online]. Available: https://doi.org/10.22190/FUME210111044B

P. Praks and D. Brkic, “Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction,” Advances in Civil Engineering, 2018. [Online]. Available: https://doi.org/10.1155/2018/5451034

A. A. Lamri and S. M. Easa, “Computationally efficient and accurate solution for colebrook equation based on lagrange theorem,” Journal of Fluids Engineering, vol. 144, p. 014504, 2022. [Online]. Available: https://doi.org/10.1115/1.4051731